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Chapter 1 
ARM Synchronization Primitives

This article introduces the hardware synchronization primitives available in the ARM 
architecture, and provides examples of how a system-level programmer can use them. 
It contains the following sections:

• Software synchronization on page 1-2

• Exclusive accesses on page 1-4

• Practical uses on page 1-9
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1.1 Software synchronization

When access to a shared resource must be restricted to only one agent at a time, software 
must be synchronized. Typically, the shared resource is a shared memory location or 
peripheral device, and the agents might be processors, processes or threads. This 
synchronization is often managed by atomically modifying a variable that holds the 
current state of the resource. That is, the modification is always entirely successful, or 
not successful at all. It must also be visible to all agents that might access the variable 
at the same time.

In a simple system, atomic modifications can be performed safely by disabling 
interrupts around critical sections of code. In a multitasking or multi-core system, this 
is not an efficient or safe solution. Modern computer architectures provide hardware 
synchronization primitives as a safe way of atomically updating memory locations.

1.1.1 Software synchronization interfaces

Operating systems or platform libraries hide these low-level hardware primitives from 
application developers behind hardware-independent.funcions that form part of 
Application Programming Interfaces (APIs).

This article covers the following high-level software synchronization primitives:

Mutex A variable, able to indicate the two states locked and unlocked. 
Attempting to lock a mutex already in the locked state blocks execution 
until the agent holding the mutex unlocks it. Mutexes are sometimes 
called locks or binary semaphores.

Semaphore A counter that can be atomically incremented and decremented. 
Attempting to decrement a semaphore that holds a value of less than 1 
blocks execution until another agent increments the semaphore.

In addition to the blocking operations, an API can define non-blocking variants. A 
non-blocking function returns an error condition instead of blocking if it fails to perform 
the requested action.

1.1.2 Synchronization in a multitasking system

In a multitasking operating system, any synchronization operation must be guaranteed 
to behave correctly even if interrupted by a context switch. When no synchronization 
with other processors to is required, software can achieve this by disabling interrupts 
while it updates the synchronization variable. This can be a useful method for 
implementing synchronization in the operating system kernel, but the performance 
overhead of a system call makes this an impractical solution for application software. 
Also, it is not a good solution when low interrupt latency is important.
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1.1.3 Synchronization in a multi-processor system

Multi-core and multi-processor systems introduce a new problem, because they can 
require a mutex to be locked, or a semaphore to be modified, atomically across the 
whole system. This might require the system to maintain global state that tracks active 
synchronization operations.

1.1.4 Historical synchronization primitives in the ARM architecture

The SWP and SWPB instructions atomically swap a 32-bit word or a byte between a register 
and memory. From the ARMv6 architecture, ARM deprecates the use of SWP and SWPB. 
This means that future architectures are not guaranteed to support these instructions. 
ARM strongly recommends that all software use the new synchronization primitives 
described in this article. For developers targeting older systems, Appendix A SWP and 
SWPB provides some information about these instructions.

1.1.5 Additions in ARMv6 architecture

The ARMv6 architecture introduced the concept of exclusive accesses to memory 
locations, providing more flexible atomic memory updates. Exclusive accesses on 
page 1-4 describes the new instructions and architectural concepts.

It also introduced the concepts of memory types, memory access ordering rules, and 
barrier instructions for explicit ordering of memory accesses. For information about 
these concepts, see the ARM Architecture Reference Manual for your architecture 
version and profile. This document is available on request from 
http://infocenter.arm.com.
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1.2 Exclusive accesses

The ARMv6 architecture introduced Load Link and Store Conditional instructions in 
the form of the Load-Exclusive and Store-Exclusive synchronization primitives, LDREX 
and STREX. From ARMv6T2, these instructions are available in the ARM and Thumb 
instruction sets. Load-Exclusive and Store-Exclusive provide flexible and scalable 
synchronization, superseding the deprecated SWP and SWPB instructions.

1.2.1 LDREX and STREX

The LDREX and STREX instructions split the operation of atomically updating memory into 
two separate steps. Together, they provide atomic updates in conjunction with exclusive 
monitors that track exclusive memory accesses, see Exclusive monitors on page 1-5. 
Load-Exclusive and Store-Exclusive must only access memory regions marked as 
Normal.

LDREX

The LDREX instruction loads a word from memory, initializing the state of the exclusive 
monitor(s) to track the synchronization operation. For example, LDREX R1, [R0] 
performs a Load-Exclusive from the address in R0, places the value into R1 and updates 
the exclusive monitor(s).

STREX

The STREX instruction performs a conditional store of a word to memory. If the exclusive 
monitor(s) permit the store, the operation updates the memory location and returns the 
value 0 in the destination register, indicating that the operation succeeded. If the 
exclusive monitor(s) do not permit the store, the operation does not update the memory 
location and returns the value 1 in the destination register. This makes it possible to 
implement conditional execution paths based on the success or failure of the memory 
operation. For example, STREX R2, R1, [R0] performs a Store-Exclusive operation to the 
address in R0, conditionally storing the value from R1 and indicating success or failure 
in R2.

Alternative exclusive access sizes

The ARMv6K architecture introduced byte, halfword and doubleword variants of LDREX 
and STREX:

• LDREXB and STREXB

• LDREXH and STREXH

• LDREXD and STREXD.
1-4 Copyright © 2009 ARM. All rights reserved. DHT0008A
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The ARMv7 architecture added these to the Thumb instruction set in the A and R 
profiles. ARMv7-M supports the byte and halfword but not the doubleword variants. 
ARMv6-M does not support exclusive accesses.

The architecture requires that each Load-Exclusive instruction must be used only with 
the corresponding Store-Exclusive instruction, for example LDREXB must only be used 
with STREXB.

1.2.2 Exclusive monitors

An exclusive monitor is a simple state machine, with the possible states open and 
exclusive. To support synchronization between processors, a system must implement 
two sets of monitors, local and global. A Load-Exclusive operation updates the 
monitors to exclusive state. A Store-Exclusive operation accesses the monitor(s) to 
determine whether it can complete successfully. A Store-Exclusive can succeed only if 
all accessed exclusive monitors are in the exclusive state.

Figure 1-1 shows an example system consisting of one Cortex™-A8 processor, one 
Cortex-R4 processor, and a memory device shared between the two.

Figure 1-1 Local and global monitors in a multi-core system

Local monitors

Each processor that supports exclusive accesses has a local monitor. Exclusive accesses 
to memory locations marked as Non-shareable are checked only against this local 
monitor. Exclusive accesses to memory locations marked as Shareable are checked 
against both the local monitor and the global monitor. 

Cortex-A8

Local monitor

Cortex-R4

Local monitor

AXI interconnect

Global monitor

Memory
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For example, if software executing on the Cortex-A8 processor in Figure 1-1 on 
page 1-5 must enforce synchronization between applications executing locally, it can do 
this using a mutex placed in Non-shareable memory. The resulting Load-Exclusive and 
Store-Exclusive instructions only access the local monitor.

A local monitor can be implemented to tag an address for exclusive use, or it can contain 
a state machine that only tracks the issuing of Load-Exclusive and Store-Exclusive 
instructions. This means a Store-Exclusive to a Shareable location might succeed even 
if the preceding Load-Exclusive was from a completely different location. For this 
reason, portable code must not make assumptions about exclusive accesses performing 
address checking.

Note

 If the location is cacheable, the synchronization might take place without any external 
bus transactions, and without the result being visible to external observers, for example 
other processors in the system.

The global monitor

A global monitor tracks exclusive accesses to memory regions marked as Shareable. 
Any Store-Exclusive operation that targets Shareable memory must check its local 
monitor and the global monitor to determine whether it can update memory.

For example, if software executing on one processor in Figure 1-1 on page 1-5 must 
synchronize its operation with software executing on the other processor, it can do this 
using a mutex placed in Shareable memory. The resulting Load-Exclusive and 
Store-Exclusive instructions access both the local monitor and the global monitor.

It is also possible for a global monitor, or part of the global monitor, to be implemented 
combined with the local monitor, for example in a system implementing cache 
coherency management. See Use in multi-core systems on page 1-8.

The global monitor can tag one address for each processor in the system that supports 
exclusive accesses. When a processor performs a Load-Exclusive to a Shareable 
location, the global monitor tags the accessed address for exclusive use by that 
processor. The following events reset the global monitor entry for processor N to open 
state:

• processor N performs an exclusive load from a different location

• a different processor successfully performs a store, or a Store-Exclusive, to the 
location tagged for exclusive use by processor N.

Other events can clear a global exclusive monitor, but they are implementation defined 
and portable code must not rely on them.
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Note

 If a region configured as Shareable is not associated with a global monitor, 
Store-Exclusive operations to that region always fail, returning 0 in the destination 
register.

Exclusives Reservation Granule

When an exclusive monitor tags an address, the minimum region that can be tagged for 
exclusive access is called the Exclusives Reservation Granule (ERG). The ERG is 
implementation defined, in the range 8-2048 bytes, in multiples of two bytes. Portable 
code must not assume anything about ERG size.

Resetting monitors

When an operating system performs a context switch, it must reset the local monitor to 
open state, to prevent false positives occurring. ARMv6K introduced the 
Clear-Exclusive instruction, CLREX, to reset the local monitor.

Note

 In ARMv6 base architecture and ARMv6T2, the local monitor must be reset by 
performing a dummy Store-Exclusive to a dedicated address.

The state of monitors is architecturally undefined after a Data Abort exception. 
Therefore, ARM recommends that the exception handling code executes a CLREX or 
dummy Store-Exclusive instruction.

If a context switch schedules out a process after the process has performed a 
Load-Exclusive but before it performs the Store-Exclusive, the Store-Exclusive returns 
a false negative result when the process resumes, and memory is not updated. This does 
not affect program functionality, because the process can retry the operation 
immediately.

For these reasons ARM recommends that:

• the Load-Exclusive and Store-Exclusive are no more than 128 bytes apart

• no explicit cache maintenance operations or data accesses are performed between 
the Load-Exclusive and the Store-Exclusive.
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1.2.3 Memory barriers

To ensure a consistent memory view, it is architecturally defined that software must 
perform a Data Memory Barrier (DMB) operation:

• between acquiring a resource, for example through locking a mutex or 
decrementing a semaphore, and making any access to that resource

• before making a resource available, for example through unlocking a mutex or 
incrementing a semaphore.

Note

 The Data Memory Barrier existed before ARMv7 as a cp15 operation, but ARMv7 
introduced a dedicated instruction, DMB.

1.2.4 Use in multi-core systems

The model for using Load-Exclusives and Store-Exclusives for synchronization is the 
same for single-core and multi-core systems, but in a multi-core system there are some 
system-wide implications you must be aware of.

Systems with coherency management

ARM MPCore™ multi-core processors contain a Snoop Control Unit (SCU), that 
maintains Level 1 data cache coherency across memory regions shared by the 
processors. In this setup, the local monitor of each core operate together with the SCU 
to provide a combined local and global monitor for synchronization operations in those 
regions marked as coherent.

Note

 This might occasionally lead to false negatives, or delays caused by transferring data 
between caches when several processors attempt to access synchronization variables 
within the same ERG block at the same time. For performance reasons, it might be 
worth to explicitly place very frequently accessed synchronization variables at least the 
size of the ERG apart in memory.

Systems without coherency management

Memory regions used for synchronization operations between processors, or cores in a 
multi-core processor, must be marked as Shareable. When coherency management is 
not available or disabled, this means that such regions cannot be cached, and a global 
monitor must be implemented to permit synchronization.
1-8 Copyright © 2009 ARM. All rights reserved. DHT0008A
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1.3 Practical uses

This section gives examples of using the exclusive access hardware synchronization 
primitives to implement a simple mutex and semaphore. The assembly language 
examples are written in the format accepted by the ARM RealView® Compilation Tools 
assembler, armasm.

1.3.1 Power-saving features

If a piece of code fails to lock a mutex, or to decrement a semaphore, it can either:

• retry until successful

• return an error code, indicating that the operation could not succeed at this time.

In many situations, you want the function to return only when it has acquired the lock. 
However, looping and retrying consumes power without performing any useful work. 
Because it is not possible to acquire the resource until an external agent modifies the 
synchronization variable, a better solution is to put the processor into a low-power state, 
or to request that the operating system schedules in a new process, and retry at a later 
point.

It can also be useful to have a form of mutex and semaphore operations that return an 
error code, making it possible for the application to perform alternative actions if it fails 
to acquire a specific resource.

Wait For Interrupt

ARMv6K introduced the Wait For Interrupt, WFI, instruction. WFI is a hint, and might not 
have any effect on some processors. On processors that implement the behavior, WFI 
indicates that the processor can enter a low-power state until a wake-up event occurs.

The wake-up events for WFI are:

• an interrupt, even if masked

• an asynchronous abort

• a debug event, when invasive debug is enabled and permitted in the current state.

In an operating system, the scheduler is often invoked by an exception handler based on 
an interrupt triggering. When you execute WFI in such an environment, this can put your 
processor into low-power state for the remainder of its execution slot. When the timer 
interrupt triggers, the scheduler is invoked and context switches in a different process. 
The next time the process is scheduled to run, it can retry to acquire the resource, and 
go back to WFI if it fails.
DHT0008A Copyright © 2009 ARM. All rights reserved. 1-9
ID012816 Non-Confidential, Unrestricted Access



ARM Synchronization Primitives 
Note

 WFI existed as a CP15 operation in many earlier processors. ARMv7 redefines the 
CP15 operation as a NOP.

Example 1-1 shows the WAIT_FOR_UPDATE and SIGNAL_UPDATE macros implemented using 
the WFI instruction.

Example 1-1 Power-saving macros using WFI

MACRO
WAIT_FOR_UPDATE
WFI ; Indicate opportunity to enter low-power state
MEND

MACRO
SIGNAL_UPDATE ; No software signalling operation
MEND

Wait For Event and Send Event

ARMv6K also introduced the Wait For Event, WFE, and Send Event, SEV instructions. 
These are hints, and might not have any effect on some processors. On processors that 
implement the behavior, WFE indicates that the processor can enter a low-power state 
until a wake-up event occurs. Portable code must not rely on WFE blocking execution.

The wake-up events for WFE are:

• the execution of an SEV instruction on any processor in a multi-core system

• an interrupt, unless masked

• an asynchronous abort, for example a buffered write generating an access fault

• a debug event, when invasive debug is enabled and permitted in the current state.

In an operating system, the scheduler is often invoked by an exception handler based on 
an interrupt triggering. When you execute WFE in such an environment, this can put your 
processor into low-power state for the remainder of its execution slot. When the timer 
interrupt triggers, the scheduler is invoked and performs a context switch. The next time 
the process is scheduled to run, it can retry to acquire the resource, and go back to WFE 
if it fails.

This is the only use for these instructions. Software must not use them for 
synchronization.
1-10 Copyright © 2009 ARM. All rights reserved. DHT0008A
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Example 1-2 shows the WAIT_FOR_UPDATE and SIGNAL_UPDATE macros implemented using 
the WFE and SEV instructions.

Example 1-2 Power-saving macros using SEV/WFE

MACRO
WAIT_FOR_UPDATE
WFE ; Indicate opportunity to enter low-power state
MEND

MACRO
SIGNAL_UPDATE
DSB ; Ensure update has completed before signalling
SEV ; Signal update
MEND

The SIGNAL_UPDATE macro begins with a Data Synchronization Barrier to ensure that the 
update to the synchronization variable is visible to all processors before SEV is executed.

Rescheduling as a power-saving feature

If your target operating system provides a way for a process to yield execution by 
invoking the scheduler manually, this might be the best action to take when acquiring a 
resource fails, especially in a multi-core system. This means that instead of the blocked 
process waiting for a resource until it is made available, or until the next time the 
scheduler is invoked, a different process can execute in its stead, potentially increasing 
the system responsiveness. This also enables the system to get the total work done 
faster, so that it can return to a low-power state.

Example 1-3 shows the WAIT_FOR_UPDATE and SIGNAL_UPDATE macros implemented using 
system calls. It does not use a real system call interface, it only illustrates how one might 
look.

Example 1-3 Power-saving macros using system calls

MACRO
WAIT_FOR_UPDATE
PUSH {r0-r3,r7,r12} ; Push AAPCS corruptible registers, plus r7
LDR r7, =yield ; Parameter to SVC call passed in r7
SVC #0
POP {r0-r3,r7,r12}
MEND

MACRO
DHT0008A Copyright © 2009 ARM. All rights reserved. 1-11
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SIGNAL_UPDATE
PUSH {r0-r3,r7,r12} ; Push AAPCS corruptible registers, plus r7
LDR r7, =released ; Parameter to SVC call passed in r7
SVC #0
POP {r0-r3,r7,r12}
MEND

Both macros:

• stack the registers that might be corrupted by the SVC handler

• load a system call id into R7, indicating to the SVC handler what operation to 
perform

• execute an SVC instruction to trigger a supervisor call exception

• restore the stacked registers.

If the address of the synchronization variable is in R0, the operating system could make 
use of this to ensure the blocked process does not execute again until an update is 
signalled for that specific variable.

1.3.2 Implementing a mutex

The functions in Example 1-4 show an implementation of a simple blocking mutex:

• lock_mutex acquires a mutex, blocking indefinitely until it acquires it. If blocked, 
it invokes the WAIT_FOR_UPDATE macro before retrying.

• unlock_mutex releases a mutex, invoking the SIGNAL_UPDATE macro to notify 
waiting processes or processors of the change.

WAIT_FOR_UPDATE and SIGNAL_UPDATE are described in Power-saving features on page 1-9.

Example 1-4 implementing a mutex

locked EQU 1
unlocked EQU 0

; lock_mutex
; Declare for use from C as extern void lock_mutex(void * mutex);

EXPORT lock_mutex
lock_mutex PROC

LDR r1, =locked
1 LDREX r2, [r0]

CMP r2, r1 ; Test if mutex is locked or unlocked
BEQ %f2 ; If locked - wait for it to be released, from 2
STREXNE r2, r1, [r0] ; Not locked, attempt to lock it
CMPNE r2, #1 ; Check if Store-Exclusive failed
BEQ %b1 ; Failed - retry from 1
1-12 Copyright © 2009 ARM. All rights reserved. DHT0008A
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; Lock acquired
DMB ; Required before accessing protected resource
BX lr

2 ; Take appropriate action while waiting for mutex to become unlocked
WAIT_FOR_UPDATE
B %b1 ; Retry from 1
ENDP

; unlock_mutex
; Declare for use from C as extern void unlock_mutex(void * mutex);

EXPORT unlock_mutex
unlock_mutex PROC

LDR r1, =unlocked
DMB ; Required before releasing protected resource
STR r1, [r0] ; Unlock mutex
SIGNAL_UPDATE
BX lr
ENDP

The mutex variable passed to these functions must be 32 bits in size, located at a 4-byte 
aligned address. You must initialize it to locked or unlocked before first use.

lock_mutex performs a Load-Exclusive from the address passed in R0. If this location 
holds the value locked, the function invokes WAIT_FOR_UPDATE before retrying. If the 
location holds any other value, it performs a Store-Exclusive of the value locked. If the 
Store-Exclusive fails, the function retries immediately from the Load-Exclusive step. 
When the Store-Exclusive succeeds, it executes a DMB and returns.

unlock_mutex stores the value unlocked to the address passed in R0. Because only a thread 
or process currently holding the mutex must unlock it, it can use a normal STR for this 
operation. However, it must execute a DMB before updating the mutex location. It then 
invokes SIGNAL_UPDATE, to notify any blocked processes or processors, and returns.

Example 1-5 shows how you can call these functions from C source code. The function 
putstr uses the mutex output_mutex to ensure than the entire string passed in str is 
printed together, even if several threads call it simultaneously. It returns the total 
number of characters printed from str.

Example 1-5 synchronizing text printout

#define locked 1
#define unlocked 0

extern void lock_mutex(void * mutex);
DHT0008A Copyright © 2009 ARM. All rights reserved. 1-13
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extern void unlock_mutex(void * mutex);

unsigned int output_mutex = unlocked;

int putstr(char * str)
{

int i;

/* Wait until the output mutex is acquired */
lock_mutex(&output_mutex);

/* Entered critical section */

/* Output each individual character from str */
for(i=0 ; str[i] != ‘\0’ ; i++) {

putc(str[i]);
}

/* Leave critical section - release output mutex */
unlock_mutex(&output_mutex);

return i;
}

1.3.3 Implementing a semaphore

The functions in Example 1-6 show an implementation of a simple blocking 
semaphore:

• sem_dec decrements a semaphore if its value is greater than 0, or blocks until it is 
able to decrement it. If blocked, it invokes the WAIT_FOR_UPDATE macro before 
retrying.

• sem_inc increments a semaphore, invoking the SIGNAL_UPDATE macro to notify 
blocked processes or processors of the change if the previous value was 0.

WAIT_FOR_UPDATE and SIGNAL_UPDATE are described in Power-saving features on page 1-9.

Example 1-6 implementing a semaphore

; sem_dec
; Declare for use from C as extern void sem_dec(void * semaphore);

EXPORT sem_dec
sem_dec PROC
1 LDREX r1, [r0]

CMP r1, #0 ; Test if semaphore holds the value 0
BEQ %f2 ; If it does, block before retrying
1-14 Copyright © 2009 ARM. All rights reserved. DHT0008A
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SUB r1, #1 ; If not, decrement temporary copy
STREX r2, r1, [r0] ; Attempt Store-Exclusive
CMP r2, #0 ; Check if Store-Exclusive succeeded
BNE %b1 ; If Store-Exclusive failed, retry from start
DMB ; Required before accessing protected resource
BX lr

2 ; Take appropriate action while waiting for semaphore to be incremented
WAIT_FOR_UPDATE ; Wait for signal to retry
B %b1
ENDP

; sem_inc
; Declare for use from C as extern void sem_inc(void * semaphore);

EXPORT sem_inc
sem_inc PROC
1 LDREX r1, [r0]

ADD r1, #1 ; Increment temporary copy
STREX r2, r1, [r0] ; Attempt Store-Exclusive
CMP r2, #0 ; Check if Store-Exclusive succeeded
BNE %b1 ; Store failed - retry immediately
CMP r0, #1 ; Store successful - test if incremented from zero
DMB ; Required before releasing protected resource
BGE %f2 ; If initial value was 0, signal update
BX lr

2 ; Signal waiting processors or processes
SIGNAL_UPDATE
BX lr
ENDP

The semaphore variable passed to these functions must be 32 bits in size, located at a 
4-byte aligned address. You must initialize it to a value greater than or equal to 0 before 
first use.

sem_dec performs a Load-Exclusive from the address passed in R0. If this location holds 
the value 0, the function invokes WAIT_FOR_UPDATE before retrying. If the location holds 
a value greater than zero, it decrements it and attempts to update the semaphore value 
using a Store-Exclusive. If the Store-Exclusive fails, for example because another agent 
has modified the variable after the Load-Exclusive step, it retries from the start. When 
the Store-Exclusive succeeds, it executes a DMB and returns.

sem_inc performs a Load-Exclusive from the address passed in R0. It then increments 
this value and attempts to update the location using a Store-Exclusive. If the 
Store-Exclusive fails, it retries immediately from the Load-Exclusive step. If the 
Store-Exclusive succeeds, it checks what the value of the semaphore was before 
DHT0008A Copyright © 2009 ARM. All rights reserved. 1-15
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incremented, and then executes a DMB. If the value was 0, there could be processes or 
processors waiting for this semaphore to be incremented, so it invokes the 
SIGNAL_UPDATE macro before returning.

Example 1-7 shows how you can call these functions from C source code. The function 
add_task.adds an object of type struct task to a queue and calls sem_inc to atomically 
increment task_semaphore to signal that a task has been added. The function get_task 
calls sem_dec to atomically decrement task_semaphore, or block until it is able to do so, 
and then takes an object off the queue.

Example 1-7 synchronizing a task queue

extern void sem_inc(void * semaphore);
extern void sem_dec(void * semaphore);

unsigned int task_semaphore = 0;

void add_task(struct task * task)
{

/* Add task to queue */
...

/* Increment semaphore to show task has been added*/
sem_inc(&task_semaphore);

return;
}

struct task * void get_task(void)
{

struct task * tmptask;

/* Decrement semaphore, or block until it indicates a task is available */
sem_dec(&task_semaphore);

/* Take task from queue */
...

return tmptask;
}
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1.3.4 Lockless programming

Apart from using Load-Exclusives and Store-Exclusives to implement software 
synchronization primitives, you can also use them to directly update affected data 
atomically, rather than obtaining a lock to a shared variable. This is often described as 
lockless programming.

For example, a linked list can be implemented using atomic updates of pointers instead 
of using synchronization variables to protect the pointers while modifying them. The 
exclusive synchronization primitives in ARMv6K and later architectures support all 
data sizes that can be natively processed, so are well suited to implement lockless 
algorithms.

Lockless programming is an advanced topic, beyond the scope of this article. Many 
independent publications describe the concepts and implementations in great detail.
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Appendix A 
SWP and SWPB

This appendix describes the legacy SWP and SWPB instructions, used for synchronization 
on processors based on ARMv5 architecture and earlier. It contains the following 
section:

• Legacy synchronization instructions on page A-2

Note

 The SWP and SWPB instructions are deprecated from ARM architecture version 6 onwards. 
This appendix is included for historical completeness only. Use Load-Exclusive and 
Store-Exclusive for all new software development for processors implementing 
ARMv6 or later.
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A.1 Legacy synchronization instructions

The SWP and SWPB instructions were used for synchronization before the introduction of 
exclusive accesses into the ARM architecture. This section describes how they work.

A.1.1 SWP and SWPB

SWP (Swap) and SWPB (Swap Byte) provide a method for software synchronization that 
does not require disabling interrupts. This is achieved by performing a special type of 
memory access, reading a value into a processor register and writing a value to a 
memory location as an atomic operation. Example A-1 shows the implementation of 
simple mutex functions using the SWP instruction. SWP and SWPB are not supported in the 
Thumb instruction set, so the example must be assembled for ARM.

Example A-1 binary mutex functions

EXPORT lock_mutex_swp
lock_mutex_swp PROC

LDR r2, =locked
SWP r1, r2, [r0] ; Swap R2 with location [R0], [R0] value placed in R1
CMP r1, r2 ; Check if memory value was ‘locked’
BEQ lock_mutex_swp ; If so, retry immediately
BX lr ; If not, lock successful, return
ENDP

EXPORT unlock_mutex_swp
unlock_mutex_swp

LDR r1, =unlocked
STR r1, [r0] ; Write value ‘unlocked’ to location [R0]
BX lr
ENDP

In the SWP instruction in Example A-1, R1 is the destination register that receives the 
value from the memory location, and R2 is the source register that is written to the 
memory location. You can use the same register for destination and source.

The requirements for memory barriers mentioned in Memory barriers on page 1-8 still 
apply for processors implementing architecture versions earlier than ARMv6. Where 
required, use the Drain Write Buffer or Drain Store Buffer CP15 operation on 
processors implementing versions of the architecture earlier than ARMv6.
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A.1.2 Limitations of SWP and SWPB

If an interrupt triggers while a swap operation is taking place, the processor must 
complete both the load and the store part of the instruction before taking the interrupt, 
increasing interrupt latency. Because Load-Exclusive and Store-Exclusive are separate 
instructions, this effect is reduced when using the new synchronization primitives.

In a multi-core system, preventing access to main memory for all processors for the 
duration of a swap instruction can reduce overall system performance. This is especially 
true in a multi-core system where processors operate at different frequencies but share 
the same main memory.

Because of these problems, ARMv6 and later deprecate using SWP and SWPB. The 
Multiprocessor Extensions to ARMv7 introduce the SW bit in the CP15 System Control 
Register. On processors that implement these extensions, after power-up or a reset, 
software must set this bit to 1 to enable use of the SWP and SWPB instructions.
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Appendix B 
Revisions

This appendix describes the technical changes between released issues of this book.

Table B-1 Issue A

Change Location Affects

First release - -
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