
1 Introduction
The Touch Sensing Software (TSS) solution transforms a
standard Freescale microcontroller into a proximity capacitive
touch sensor controller. In TSS 3.0 and higher versions, the
touch sense library enables capacitive sensing not only for the
entire Freescale S08, ColdFire V1 family and
ARM®Cortex™-M4 Kinetis, but also ARM Cortex-M0+
Kinetis L family of microcontrollers.

In the TSS 3.0.1 Library, a demo called
FRDMKL25Z_DEMO is offered using TSI method based on
FRDM-KL25Z board. The FRDM-KL25Z is an ultra-low-cost
development platform enabled by Kinetis L Series KL1 and
KL2 MCU families built on ARM Cortex-M0+ processor.

In this application note, the demo FRDMKL25Z_DEMO is
mostly reused and and finally shows touch sensing with GPIO
method, not TSI method. This is a good example of
integrating TSS for those MCUs that have no TSI module
such as S08 or KL02.

1.1 Kinetis L series freedom
development platform

The FRDM-KL25Z is an ultra-low-cost development platform
enabled by Kinetis L Series KL1 and KL2 MCU families built
on ARM Cortex-M0+ processor. The features of FRDM-

Freescale Semiconductor Document Number:AN4637

Application Note Rev. 0, 11/2012

Integrating Touch Sensing
Software (TSS 3.0.1) on Kinetis L
Using GPIO Method
by: Xianhu Gao

© 2012 Freescale Semiconductor, Inc.

Contents

1 Introduction..1

1.1 Kinetis L series freedom development
platform..1

1.2 Touch-Sensing Software 3.0.12

1.3 Analog slider..2

2 GPIO-based capacitive touch sensing
method..3

2.1 Touch sensing algorithm................................3

2.2 Analog slider control API..............................4

2.3 Application interrupt
management...5

3 Settings for GPIO method...5

3.1 Electrodes definition......................................5

3.2 Hardware timer..6

3.3 Peripheral initialization..................................6

3.4 Pullup resistor...7

3.5 Low-power function.......................................7

4 FreeMASTER...9

5 Conclusion...12

6 Reference...12

KL25Z include easy access to MCU I/O, battery-ready, low-power operation, a standard-based form factor with expansion
board options and a built-in debug interface for flash programming and run-control. The FRDM-KL25Z is supported by a
range of Freescale and third-party development software.

More information about FRDM-KL25Z can be found at: freescale.com/FRDM-KL25Z.

1.2 Touch-Sensing Software 3.0.1
The touch sensing software (TSS) solution transforms a standard Freescale microcontroller into a proximity capacitive touch
sensor controller. Compared with the earlier version, TSS 3.0 and higher versions added a new text with the sections “Signal
normalization”, “Automatic sensitivity calibration”, “Baseline initialization”, “Electrodes groups”, “Analog slider and analog
rotary decoder API”, “Reading the instant delta in the control”, “Proximity function”, “Automatic Sensitivity Calibration”,
“Shielding function and Water tolerance”, “Water tolerance mode”, “Analog rotary”, “Analog Slider”, and “Matrix”. (See the
Revision History of TSSAPIRM : TSSAPIRM, Touch Sensing Software API Reference Manual, available on
freescale.com.)

The latest TSS can be found at: freescale.com/TSS.

1.3 Analog slider
In this application note, the analog slider is used to control the brightness of the LEDs. An analog slider control works similar
as the standard slider, but with less electrodes and the calculated position has a higher resolution. For example, a two-
electrode analog slider can provide an analog position in the range 128. The shape of the electrodes need to meet the
condition that increases and decreases the signal during the finger movement which needs to be linear. Figure 1 shows the
arrangement of electrodes used for a typical analog slider.

Figure 1. Electrode analog slider

Introduction

Integrating Touch Sensing Software (TSS 3.0.1) on Kinetis L Using GPIO Method, Rev. 0, 11/2012

2 Freescale Semiconductor, Inc.

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=FRDM-KL25Z
http://www.freescale.com
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=TSS

2 GPIO-based capacitive touch sensing method
The GPIO low-level sensing method measures the capacitance using the GPIO capacitive touch sensing method as discussed
in Touch sensing algorithm. To measure the capacitance of an electrode, a Freescale MCU with GPIO and time measurement
capabilities is required.

2.1 Touch sensing algorithm
The electrode connected to the MCU acts like a capacitor, and the external pullup resistor limits the current to charge the
electrode. Figure 2 shows the diagram of the circuit.

Figure 2. Electrode equivalent circuit

The RC circuit charging time constant (τ) is defined by the following equation:

According to the above equation, if the pullup resistor remains the same, an increase in the capacitance will increase the
circuit charging time. The MCU measures the charging time and uses this value to determine if the electrode has been
touched or not. As the electrode is touched, the finger capacitance is added to the capacitance of the electrode. This increases
the circuit capacitance, which increases the charge time measured by the timer. The following figure shows the charging time
of the capacitor with finger added capacitance.

GPIO-based capacitive touch sensing method

Integrating Touch Sensing Software (TSS 3.0.1) on Kinetis L Using GPIO Method, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 3

Figure 3. Charge time of capacitor with finger added capacitance

As shown in Figure 3 :

• C1 — The charging time curve when there is no extra capacitance or when the electrode has not been touched.
• C2 — The charging time curve when the electrode has been touched.
• T1 — The charging time when the electrode has not been touched.
• T2 — The charging time when the electrode has been touched.

2.2 Analog slider control API
In TSS library, there exists TSS_SensorGPIO.c and TSS_SensorGPIO.h files, which contain the functions to perform the
sensing of the electrodes and set the status for each electrode.

For analog slider, 8 configuration and status registers are offered. See Table 1.

Table 1. Control configuration and status registers

Register number Size(bytes) Register name Initial value Brief description

0x00 1 ControlId Application
dependable

R—Displays the control type and
control number

0x01 1 ControlConfig 0x00 RW—This register configures
overall enablers of the object.

0x02 1 DynamicStatus 0x00 R—Displays the movement,
direction, and displacement

information

Table continues on the next page...

GPIO-based capacitive touch sensing method

Integrating Touch Sensing Software (TSS 3.0.1) on Kinetis L Using GPIO Method, Rev. 0, 11/2012

4 Freescale Semiconductor, Inc.

Table 1. Control configuration and status registers (continued)

Register number Size(bytes) Register name Initial value Brief description

0x03 1 Position 0x00 R—Displays the touch and absolute
position information. Hold the invalid

position status flag.

0x04 1 Events 0x00 RW—Configures the events that call
the callback function

0x05 1 AutoRepeatRate 0x00 RW—Configures the rate at which
keys will be reported when they are
kept pressed and no movement is

detected.

0x06 1 MovementTimeout 0x00 RW—Number of times the decoder
must detect a no displacement

before reporting a hold event and no
movement

0x07 1 Range 0x40 RW—Defines the absolute range
within which the position is reported.

But these registers are not supposed to be operated directly, or the data may get corrupt. The TSS_SetASliderConfig() and
TSS_GetASliderConfig() are the two APIs prepared for users in TSS_API.h file.

All the registers mentioned in Table 1 are read or written by the following two API functions.

UINT8 TSS_SetASliderConfig(TSS_CONTROL_ID u8ControlId,UINT8 u8Parameter,UINT8 u8Value)
UINT8 TSS_GetASliderConfig(TSS_CONTROL_ID u8ControlId,UINT8 u8Parameter);

2.3 Application interrupt management
When using GPIO method, all user interrupt handlers must register themselves with the TSS library by calling the
TSS_SET_SAMPLE_INTERRUPTED() macro. The TSS leaves interrupts enabled while taking electrode measurements.
The electrode measurement routine may get interrupted by a user application interrupt that causes the values sampled by the
GPIO method to be invalid. So this is the user’s responsibility to handle this micro.

3 Settings for GPIO method
FRDMKL25Z_DEMO is the demo special for KL25 Freedom board in TSS3.0 and above library, the default touch sensing
method is TSI method. After downloading the code (see freescale.com/FRDM-KL25Z), the brightness of three LEDs on the
board can be controlled by touching the analog slider. Besides, low power and wake up control are also shown in the demo.

However, in this application, GPIO method is the highlight, so some of the key points must be picked out and modified.

3.1 Electrodes definition
There are two types for electrodes: GPIO and TSIx_CHy. The default demo configuration is for TSI pin, so the Analog Slider
pin is defined in TSS_SystemSetup.h file using the following code:

#define TSS_E0_TYPE TSI0_CH9
#define TSS_E1_TYPE TSI0_CH10

Settings for GPIO method

Integrating Touch Sensing Software (TSS 3.0.1) on Kinetis L Using GPIO Method, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 5

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=FRDM-KL25Z

But in GPIO method, the following macro is defined:

#define TSS_E0_P B
#define TSS_E0_B 16
#define TSS_E1_P B
#define TSS_E1_B 17

#define TSS_E0_TYPE GPIO
#define TSS_E1_TYPE GPIO

TSS_E0_P and TSS_E0_B indicate the port and the bit in this port. For example, in the above configuration, E0 is PTB16
and E1 is PTB17. Although PTB16 and PTB17 are still the same pins with TSI0_CH9 and TSI0_CH10, these are now just
normal GPIO and no longer in TSI control mode.

Besides, if user needs to set the GPIO strength and slew rate, the following macro can be defined:

#define TSS_USE_GPIO_STRENGTH 1
#define TSS_USE_GPIO_SLEW_RATE 1

These are the basic changes from TSI method to GPIO method.

3.2 Hardware timer
The algorithm of the touch sensing control is based on a counter; the counter number indicates whether a touch is detected or
how large the capacitance is added on the electrode. For GPIO method, a hardware timer must be selected from the on-chip
timer: TPMx, FTMx, MTIMx.

In this application, TPM1 is selected as the timer, so the following macro is defined in TSS_SystemSetup.h file:

#define TSS_HW_TIMER TPM1

However, in the original demo, TPM1 is used as the delay timer, so the delay function DelayMS() must be modified. In this
application, the delay function is just deleted.

The timer prescaler is required to be adjusted to the application changing the counter speed that is used to measure the
capacitance. The timer frequency depends on the MCU bus frequency. The timer configuration uses a prescaler value to
adjust the time frequency relative to the MCU bus frequency.

This adjustment is made using the following define code present in the TSS_SystemSetup.h file:

#define TSS_SENSOR_PRESCALER 4 // adjust in different applications

Sometimes, the application may use a non-standard electrode size with specific values of capacitance. The touch sense timer
interrupt provides an error handling if an electrode is never charged and also provides the code to exit the electrode charge
loop in the event of a timeout. This ensures that the capacitive sensing module does not block the application execution. The
adjustment of the timer overflow timeout value is made using the following macro present in the TSS_SystemSetup.h file:

#define TSS_SENSOR_TIMEOUT 65535 // adjust in different applications

3.3 Peripheral initialization
The TSS library provides the OnInit Callback function. Use of this callback is mandatory when executing TSS_Init function
call. This function is used to initialize the peripheral clock, setup pin multiplexers, and so on.

In this function, the definition is like this:

#define TSS_ONINIT_CALLBACK TSS_fOnInit // in TSS_SystemSetup.h file

/* in events.c file */
void TSS_fOnInit(void)

Settings for GPIO method

Integrating Touch Sensing Software (TSS 3.0.1) on Kinetis L Using GPIO Method, Rev. 0, 11/2012

6 Freescale Semiconductor, Inc.

{
 SIM_MemMapPtr sim = SIM_BASE_PTR;

 /* Modules Clock enablement */
 sim->SCGC5 |= SIM_SCGC5_PORTB_MASK; /* Port B clock enablement */

 // HW Timer clock must be opened here, or enter hard fault
 sim->SCGC6 |= SIM_SCGC6_TPM1_MASK;

 /* Set Electrodes for GPIO function */
 PORTB_PCR16 = PORT_PCR_MUX(MUX_ALT1);
 PORTB_PCR17 = PORT_PCR_MUX(MUX_ALT1);
 }

This is very important for TPM1 and PORTB, lack of which will cause hardware fault when running the code.

3.4 Pullup resistor
As per the GPIO method algorithm, a pullup resistor is necessary to influence a lot to the charging and discharging of
electrodes. In general, larger the value of the resistor, higher will be the resolution and smaller will be the range of
capacitance measuring. With the proper resistor value, the user can modify the capacitance range and the sensitivity to a
range suitable for application. Table 2 shows the maximum capacitance range and capacitance resolution at different pullup
resistance values from 500 kΩ to 2 MΩ.

Table 2. Maximum capacitance range and resolution at different pull-up resistance values

Voltage level Pullup resistor (Ω) Capacitance range (max)
(pF)

Capacitance resolution
(min) (pF)

VDD > 2.3 V 500 k 169.44 0.6645

VDD > 2.3 V 680 k 124.59 0.4886

VDD > 2.3 V 810 k 104.59 0.4102

VDD > 2.3 V 1 M 84.72 0.3322

VDD > 2.3 V 1.5 M 56.48 0.2215

VDD > 2.3 V 2 M 42.36 0.1661

1.8 V < VDD < 2.3 V 500 k 107.53 0.4217

1.8 V < VDD < 2.3 V 680 k 79.07 0.3101

1.8 V < VDD < 2.3 V 810 k 66.38 0.2603

1.8 V < VDD < 2.3 V 1 M 53.77 0.2108

1.8 V < VDD < 2.3 V 1.5 M 35.84 0.1406

1.8 V < VDD < 2.3 V 2 M 26.88 0.1054

In this application, a 500 kΩ resistor is connected between P3V3 in the jumper J9 (pin 8) on board and the electrode. If a 10
kΩ resistor is pulled up, the charging and discharging time is too small, so the touch may not be even detected; if a 10 MΩ
resistor is pulled up, the dynamic feature is not so good. So, the proper pullup resistor must be adjusted by the application.

3.5 Low-power function
In the FRDMKL25Z_DEMO demo, low-power function is added; if no touch is detected in about 8 seconds, the system will
enter low-power mode LOW_POWER_MODE that is defined in main.h file. The CPU will wake up if a touch is detected,
because the TSI out-of-range interrupt can wake the MCU in all kinds of low-power modes.

Settings for GPIO method

Integrating Touch Sensing Software (TSS 3.0.1) on Kinetis L Using GPIO Method, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 7

There is an issue in the current KL25 chips that the out-of-range interrupt function is closely connected with the end of scan
interrupt. The user can not wake the CPU with the out-of-range interrupt independently, so the demo gives out a workaround.
The LPTMR is used as the LLWU source too. Every time the LPTMR interrupt occurs, the TSI0_GENCS register will be
polled and the End of Scan flag is cleared, or the scan of electrode will not be executed.

The TSS does not fully manage the MCU low-power mode. The TSS just prepares the TSS system and the selected lower
power control source device for entering the low-power mode of the MCU. Then, the user initiates entering into low-power
mode by himself.

The following steps show an example of typical use of low-power function.
1. The peripheral module which is responsible for low-power control and synchronization is defined by the

TSS_USE_LOWPOWER_CONTROL_SOURCE function contained in TSS_SystemSetup.h file.

#define TSS_USE_LOWPOWER_CONTROL_SOURCE TSI0
2. The user defines LowPowerScanPeriod, LowPowerElectrode and LowPowerElectrodeSensitivity registers by the

TSS_SetSystemConfig.

TSS_SetSystemConfig(System_LowPowerScanPeriod_Register, 0x08);
TSS_SetSystemConfig(System_LowPowerElectrode_Register, 29u);
TSS_SetSystemConfig(System_LowPowerElectrodeSensitivity_Register, 0x1A);

3. If the user wants to enter the MCU low-power mode, the Low Power Enabler bit in the System Configuration register,
has to be enabled by the TSS_SetSystemConfig function.

(void)TSS_SetSystemConfig(System_SystemConfig_Register,(TSS_SYSTEM_EN_MASK |
TSS_DC_TRACKER_EN_MASK | TSS_LOWPOWER_EN_MASK));

4. The user may now force the MCU to enter low-power mode by instructions related to the used MCU platform.

LowPowerControl(); // in the main loop in main.c
5. If the selected lower power control source device detects a touch, the MCU wakes and the program continues to run.

The Low-Power Enabler bit is automatically disabled.

However, in this application, GPIO method is selected and TSI module is not used at all, so the TSI associated configuration
must be removed. Therefore, the following macro in the original demo code must be removed:

/* in isr.h */
 #undef VECTOR_042
 #define VECTOR_042 TSS_TSI0Isr

/* in TSS_SystemSetup.h */
 #define TSS_USE_LOWPOWER_CONTROL_SOURCE TSI0

/* TSI Autocalibration Settings */
 #define TSS_TSI_RESOLUTION 6
 #define TSS_TSI_EXTCHRG_LOW_LIMIT 1
 #define TSS_TSI_EXTCHRG_HIGH_LIMIT 7
 #define TSS_TSI_PS_LOW_LIMIT 0
 #define TSS_TSI_PS_HIGH_LIMIT 7

/* Active Mode Clock Settings */
#define TSS_TSI_AMCLKS 0
 #define TSS_TSI_AMPSC 0
 #define TSS_TSI_AMCLKDIV 1

/* Low Power TSI definition */
 #define TSS_TSI_LPCLKS 0

/* in TSS_fOnInit(void) in events.c file */
 sim->SCGC5 |= SIM_SCGC5_TSI_MASK;
/* Set Electrodes for TSI function */
 PORTB_PCR16 = PORT_PCR_MUX(MUX_ALT0);
 PORTB_PCR17 = PORT_PCR_MUX(MUX_ALT0);

Settings for GPIO method

Integrating Touch Sensing Software (TSS 3.0.1) on Kinetis L Using GPIO Method, Rev. 0, 11/2012

8 Freescale Semiconductor, Inc.

4 FreeMASTER
The FreeMASTER software is one of the off-chip drivers, which supports communication between the target microcontroller
and PC. The TSS library can use the FreeMASTER (GUI) tool for visualization and configuration of internal library
variables. This tool also enables to observe the signal behavior, tune sensitivities, and setup the TSS system control registers.
The GUI for this application has been built and saved in TSS 3.0\examples\FRDMKL25Z_DEMO\gui. The following steps
discuss the usage of the GUI.

1. First, open the GUI file in FRDMKL25Z_DEMO\gui and build the connection. Choose Project > Options and select
the Comm tab. Set Port as the virtual serial port on the computer and set baud rate as 115,200. See Figure 4 as an
example.

Figure 4. Build communication
2. Next, choose File > Start Communication. The GUI can read the data from MCU through the serial port, and the user

can check the System configurations and the electrode signal changing curve. Figure 5 shows the system configurations
user sets in the code, Figure 6 shows the electrodes signal data, Figure 7 shows the control status, and Figure 8 shows
the electrodes signal data curve.

FreeMASTER

Integrating Touch Sensing Software (TSS 3.0.1) on Kinetis L Using GPIO Method, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 9

Figure 5. System configuration

FreeMASTER

Integrating Touch Sensing Software (TSS 3.0.1) on Kinetis L Using GPIO Method, Rev. 0, 11/2012

10 Freescale Semiconductor, Inc.

Figure 6. Electrodes data

Figure 7. Control status

FreeMASTER

Integrating Touch Sensing Software (TSS 3.0.1) on Kinetis L Using GPIO Method, Rev. 0, 11/2012

Freescale Semiconductor, Inc. 11

Figure 8. Electrodes data curve

5 Conclusion
This application is based on the KL25 demo; the difference is in the touch sensing method, the original demo is based on TSI
module while this application is based on GPIO. This is a good example for the user to integrate the TSS library into the
existing project or modify an existing TSS project using GPIO method. Using GPIO as the touch sensing electrode only
needs 1 free I/O and a hardware timer. This is very useful to those chips with no TSI module such as KL02 and S08, for
example and also leads to cost reduction. This application has been successfully executed on the KL25 and KL02 Freedom
boards with the same results as the TSI method.

6 Reference
The following documents are available at freescale.com for further reference.

• TSSUG: TSSUG, Touch Sensing Software Users' Guide (Rev. 5)
• TSSAPIRM: TSSAPIRM, Touch Sensing Software API Reference Manual (Rev. 7)
• FRDM-KL25Z: Kinetis L Series Freedom Development Platform

Conclusion

Integrating Touch Sensing Software (TSS 3.0.1) on Kinetis L Using GPIO Method, Rev. 0, 11/2012

12 Freescale Semiconductor, Inc.

http://www.freescale.com

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

Document Number: AN4637
Rev. 0, 11/2012

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductors products. There are no express or implied
copyright licenses granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any
products herein. Freescale Semiconductor makes no warranty, representation, or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any liability, including without limitation
consequential or incidental damages. "Typical" parameters that may be provided in
Freescale Semiconductor data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All operating parameters,
including "Typicals", must be validated for each customer application by customer's
technical experts. Freescale Semiconductor does not convey any license under its patent
rights nor the rights of others. Freescale Semiconductor products are not designed,
intended, or authorized for use as components in systems intended for surgical implant
into the body, or other applications intended to support or sustain life, or for any other
application in which failure of the Freescale Semiconductor product could create a
situation where personal injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or unauthorized application,
Buyer shall indemnify Freescale Semiconductor and its officers, employees, subsidiaries,
affiliates, and distributors harmless against all claims, costs, damages, and expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury
or death associated with such unintended or unauthorized use, even if such claims alleges
that Freescale Semiconductor was negligent regarding the design or manufacture of
the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and
electrical characteristics as their non-RoHS-complaint and/or non-Pb-free counterparts.
For further information, see http://www.freescale.com or contact your Freescale
sales representative.

For information on Freescale's Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.

© 2012 Freescale Semiconductor, Inc.

	Introduction
	Kinetis L series freedom development platform
	Touch-Sensing Software 3.0.1
	Analog slider

	GPIO-based capacitive touch sensing method
	Touch sensing algorithm
	Analog slider control API
	Application interrupt management

	Settings for GPIO method
	Electrodes definition
	Hardware timer
	Peripheral initialization
	Pullup resistor
	Low-power function

	FreeMASTER
	Conclusion
	Reference

