Freescale Semiconductor
Application Note

Document Number: AN4752
Rev. 0, 5/2013

FreeMASTER Usage

Serial driver implementation

Radomir Kozub
Roznov, Czech Republic

The FreeMASTER serial driver is a piece of code that
enables an embedded application to communicate with
the FreeMASTER PC application. This application note
shows how to add the FreeMASTER serial driver to your

embedded code.

1 What are the FreeMASTER

serial driver and
FreeMASTER PC
application?

FreeMASTER is a PC-based development tool serving
as a real-time monitor, visualization tool, and graphical
control panel of embedded applications based on

Freescale Semiconductor processing units.

The FreeMASTER PC application repetitively sends a
request for the immediate values of chosen variables
used in the embedded application (the PC application
acts as the master in this peer-to-peer communication).

© Freescale Semiconductor, Inc., 2013. All rights reserved.

Contents
What are the FreeMASTER serial driver and FreeMASTER
PC application? 1
1.1 | wantit— where do | get the FreeMASTER
serialdriver? 2
1.2 Whatcanlfind onthe harddrive?. 4
1.3 What features does the serial driver offer? 5
How do | create my first application with FreeMASTER
in CodeWarrior 10.3? i 5
2.1 How to create an empty bareboard project
stationery using CodeWarrior 10.3 5
2.2 How to add the FreeMASTER communication driver
filestotheproject 7
2.3 How to configure the FreeMASTER serial driver. . 10
2.4 FreeMASTER API short description 11
2.5 What FreeMASTER API functions do | have to
handle in my application, and where?.......... 12
FreeMASTER PC application configuration 14
3.1 How to set up the communication channel 14
3.2 MAPfileselection 15
3.3 How to choose the observed variable 16
3.4 HowtosetuptheScope.................... 18
3.5 HowtosetuptheRecorder.................. 20
3.6 How to configure the Recorder in the FreeMASTER
PC application. 20
Is there any easier way to integrate FreeMASTER into
MY Project? . ..o 21
4.1 How to set up a new project with FreeMASTER
drivers integrated by the Processor Expert. 21
4.2 How to add FreeMASTER serial drivers to the
Projecto 22
4.3 How to set up the FreeMASTER functionality 23
4.4 How to set up the UART parameters. 24
4.5 How to modify code in the application. 25
Finalwords 26
-

Z“freescale

What are the FreeMASTER serial driver and FreeMASTER PC application?

The embedded application replies with the actual value of the variable (the embedded application acts as
a slave in the communication). The FreeMASTER PC Application visualizes the variable value. The piece
of embedded code that takes care of responding to a request is called the FreeMASTER serial driver. This
driver carries out protocol parsing, prepares responses, and handles the communication periphery. The
serial driver covers the UART SCI and CAN communication for all supported devices, and the
EONCE/JTAG communication for the 56F8xxx family of hybrid microcontrollers.

This document describes how to add the FreeMASTER serial driver software to your embedded
application and configure it.

SCI
FreeMASTER Communication channel Fice Embedded
application - 3 application
Sy e [can | MASTER
| Serial
P— - driver
L] J

Go to http://www.freescale.com/Freemaster to get the latest version of the FreeMASTER PC application,
as well as the FreeMASTER serial drivers.

All details about the communication protocol and the FreeMASTER PC application may be found in the
FreeMASTER installation folder in the documents mcbcom.pdf and pcm_um.pdf. The default installation
path is preset to c:\Program Files\Freescale\FreeMASTER 1.3\

1.1 | want it — where do | get the FreeMASTER serial driver?

Go to the http://www.freescale.com/Freemaster download section, download the FMASTERSCIDRV.exe
file and run the installation. Run through the welcome page and license agreement, then choose the path
on where to install the serial driver files. The installer will unpack all the selected files — the driver source
files, examples, and documentation — into the chosen directory.

FreeMASTER Usage, Rev. 0

2 Freescale Semiconductor

http://www.freescale.com/Freemaster
http://www.freescale.com/Freemaster

4
What are the FreeMASTER serial driver and FreeMASTER PC application?

Open File - Security Warning

The publisher could not be verified. Are you sure you want to
run this software?

@ Name: Ch\data\temp'\FMASTERSCIDRY, exe
Publisher: Unknown Publisher
Type: Application
From: Chdata‘temp'\FMASTERSCIDRY.exe

Run | | Cancel

Always ask before opening this file

l--’ Thig file does not have a valid digital signature that verfies its
| publisher. You should onby run software from publishers you tnust.
How can | decide what software to un?

Choose Folder
Please select the installation folder.
Path:
b \Program Files\Freescale \FreeMASTER Serial Communical
Directories:
4) Freescale -
&> |y CodeWarrior for Microcontroller:
i |, FreeMASTER 1.3 (N
|| FSLPacker
[») MC1326x Test Tool Suite
|| Padker
>l FuH i
1 I 3

[oK] [Cancel

You may either choose only those drivers for the platform you are planning to use (e.g. Kxx Kinetis ARM
Processors) or choose a complete installation. Then, go through the installation wizard and finish it.

FreeMASTER Usage, Rev. 0

Freescale Semiconductor 3

What are the FreeMASTER serial driver and FreeMASTER PC application?

1.2

-

FreeMASTER Serial Communication Driver V1.6 - InstallShield Wizard ==

Select Components ik

&

Select the componentz pou want to install, and deselect the components you do not want to
ifiztall,

Select the componentz setup will inztall

-[w] BEFE00E Hybrid Contrallers .| | Description
W HCOZ, HCS08 Microcontrallers FreeMASTER Serial
~[WHC12, HC512, HC512+ Micracontrallers Cammunication Driver source

-] MCF51mx ColdFire Processars code. Required

W] MCF5200 ColdFire Processors
W] MPCE500 PowerPC Processors
W] MPCHE00 PowerPC Processors
[K Einetis &RM Processors
[M Platform

-[w] Suppart -
27.34 MEB of space required on the C dive

27516.32 ME of gpace available on the C drive

m

¢ Back |[Meut »]| Cancel

What can | find on the hard drive?

On the installation path is the ..\FreeMASTER Serial Communication V1.6 directory, which contains the
following subfolders:

doc — It’s worth reading the document that outlines all the important details on the serial driver
software.

examples — The quickest way to run your first application with FreeMASTER is to open and
modify a bareboard example application. Examples are already prepared for all the supported
platforms (processors) for CodeWarrior and 1AR development tools. For the Kinetis ARM
processors, examples cover the K40 KWICSTICK and the K60N512 Tower board.

src_common — This directory contains the common driver source files shared around all the
supported platforms. All the *.c and *.h files in the directory should be added to your project,
compiled and linked together with your application.

src_platforms — This folder contains subfolders with platform-specific parts of the serial driver
(Kxx, 56F8xxx, HC08, HC12, MPC55xXx, etc.). Your application needs only those files in the
platform-specific subfolder. For the Kinetis ARM processor, you must add only the *.c and *.h files
from the Kxx subfolder.

support — Contains those files needed for virtual serial com port usage.

FreeMASTER Usage, Rev. 0

Freescale Semiconductor

1.3

How do | create my first application with FreeMASTER in CodeWarrior 10.3?

What features does the serial driver offer?

The FreeMASTER serial driver implements all the features necessary to establish a communication
between your embedded application and the FreeMASTER PC application. Communication may use one
of the following hardware layers: SCI, EONCE/JTAG (56F8xxx Hybrid DSC), CAN, or Packet-Driven

BDM.

The most important serial driver functions are:

2.1

Read/Write — Access to any memory location to read / modify an arbitrary variable or register.
Oscilloscope access — Optimized real time reading of up to eight variables in one shot (all
requested variables are read in a very short time), used for the graph visualization tool termed
Scope in the FreeMASTER PC Application.

Recorder — If observed variables are changing fast, the bandwidth limited serial line can’t transfer
the variable real time values. The recorder feature allows you to store the observed variables’ real
time data to the buffer in the embedded application and to transfer the buffer to the FreeMASTER
PC application when the trigger event occurs. The transferred data is then visualized by the
Recorder component of the FreeMASTER PC application. The buffer length is limited by the
amount of available memory in the processor, or to 64KB.

Application commands — High-level message delivery from the PC to the application.
Target-side Addressing (TSA) — With this feature, you are able to describe the variables and
structure data types directly in the application source code and make this information available for
the FreeMASTER application tool. The tool may then use this information instead of reading it
from the application’s ELF/Dwarf executable file.

How do | create my first application with FreeMASTER
in CodeWarrior 10.3?

How to create an empty bareboard project stationery using
CodeWarrior 10.3

We can use the create project wizard to create stationery containing all the necessary files to load and flash
an empty project. The stationery contains processor header files, a linker file, start-up code, C initialization
code, device initialization, and an empty main.

Select the folder where the project will be created.

FreeMASTER Usage, Rev. 0

Freescale Semiconductor

How do | create my first application with FreeMASTER in CodeWarrior 10.3?

ﬁ Workspace Launcher E
Select a workspace

CodeWarrior Development Studio stores your projects in a folder called a workspace.
Choose a workspace folder to use for this session,

Workspace:

CodatatFMSTR_Serial DriverCW)

[7] Use this as the default and do not ask again

OK

J

Cancel]

Then choose the New Project Wizard, choose a project name, and pick the device to be used. This example
uses the MK60DN512 processor on the TWR-K60D100M tower board:

[i - odeWorrior Deveopment Stidie ™ N W W [

Fle Edit Seach Project Run MQXTool ProcessorEmpet Window Help
l) Welcome £3

CodeWarrior Development Studio

5 New Bareboard Project

Devices |
Select the dervative or board you would like to use

| (/) New Project Wizard What's New Prodt

P

1.

.i:" Example Projects

% Go to Workbench

ﬁ;sf Web Resources S

[A] Tutorials

(8 New Bareboard Project

Create an MCU Bareboard Project
Choose the location for the new project

Project name: FMSTR SesialDriverDemo

) Use default location
CA\dats\ FMSTR_ExampleC\W\FMSTR_SerisiDrives

[canca

Device or board to be used:
type filter text

K2x Fammily
& KaxFemily
K Family
¥Sx Family
a K Family
4 K50D (100 MHz) Family
MKEODNZSE
MKEODNZSEZ
MKGODNS12
MKBODNS12Z
MKSODX256
MKSODXZSGZ

Praject Type / Output:
® Application
Library
Caeates project for MKSODNSL2 (100 Mha) derivative

@ |

shock [met>]|

| cance

FreeMASTER Usage, Rev. 0

Freescale Semiconductor

4
How do | create my first application with FreeMASTER in CodeWarrior 10.3?

Then check the chosen connection board. This example doesn’t use the Processor Expert Rapid
Development tool, so select None in the Rapid Application Development window. The final step is to click
on Finish and the empty project is created.

pm‘--Mmmm
Fle Edit Search Project Run MQX Took ProcessorExpert Window Help
| E8) wescome 3

CodeWarrior Development Studio

[\‘0 New Project Wizard < What's New Product Release Notes
b Example Projects @F Web Resources Service Packs, Updates, Patches
23 New Bareboud Project B]
5 New Bareboard Project =Y
Connections 15 New Barebourd Project -y
Choose the connection to use for this project Language and Build Teols Options

Rapid Application Development j

Processor Expert, Device Initiakization
Connection to be usad:

P&E USB MultiLink Universal [FX] / USE MultiLink

L.
PA&E Cyclone MAX USB é 8 C i Rapid Apy

PAE Cyclane MAX Ethemet Cov

ation Development

"I P Cyclone MAX Serial ASM " Devce Inttistization
“1 P&E TraceLink USE Brocessor Expert
P&E TraceLink Ethernet Floating Point:
Open Se JTAG @ Software

Start with perspective designed for
Hardware configuration (pin muxing and device initialization
© Use current perspective

Initiakize all pesipherals

No device initialization code is generated, Only generates startup code. See =
VO Support: readme.ta in project how Processor Expert can be enabled (if not done
@ UART (default) el

Use current pesspective and show Processor Expert views.

@ [<k [Het> [Emeh | [con

- ® Camad i | o]

2.2 How to add the FreeMASTER communication driver files to the
project

In the Project Explorer window, right mouse-click to FMSTR_SerialDriver project, select New -> Folder,
and create a new folder Freemaster.

FreeMASTER Usage, Rev. 0
Freescale Semiconductor 7

A
How do | create my first application with FreeMASTER in CodeWarrior 10.3?

¥ C/C++ - CodeWarrior Development Studio

File Edit Search Project Run MQX Tools Pm(essnrhp:ft Window Help
NI R I T = T
T CodeWarrior Projects 52 = e

B3| B G L] Fiename =
File Name Build
TS| i
= New » Makefile Project with Existing Code
5 4
b & Project T T4 Project..
(= RAM 7
b > Sources Open in New Window g police b
[Header bile
Prpcs [Filefrom Template
el &% Source Folder
Index * ey =
Folder = -
Build Configurations M@ s 5 New Folder =0 B 5
Make Targets 4 Folder =
e I Other.. CtrlsN =
i Project Create a new folder resource.
Clean Project
[Copy Cirl+C Enter or select the parent folder:
Paste CtrisV FMSTR_ExampleCW
® Delete o o
M
ove 5 FMSTR_ExampleCW
Rename...
by Import
#a Commander 510 "7
&5 Export.
~ Project Creatit \
) i Add Files.. E) Console| Folder name: Freemaster mY =0
g Import projes
g Import MCU Close Project Resource Path
9 Mew MCU pr
£ Mew MQX-Li Rum s '
Debug As ’
Profile As »
®
] - Convert To.
Edit Linked Resources Locations.. 3
o JFMST [alE® @
Team »

Right mouse-click to the Freemaster folder, choose Add files, and add all the files from the src_common
directory along with the platform dependent files from the src_platform directory. In the Kinetis ARM
processor case, we add files from the Kxx subdirectory.

FreeMASTER Usage, Rev. 0

8 Freescale Semiconductor

How do | create my first application with FreeMASTER in CodeWarrior 10.3?

ﬁ

G@v| |, =t Freescale » FreeMASTER Serial Communication V1.6 » src_common - | 5 | | Search src_common pe |
Organize » New folder =+ [@
'l:i’ Favorites Mame . Date modified Type Size

B Desktop | | freemaster_appemd 2612012 11:07 C File 14 KB|
i Downloads ||| freemaster_bdm 261.2012 11:07 C File 4KB|
‘£l Recent Places | _ freemaster_can 26.1.201211:07 C File 24 KB|
1o IC135-LHB4-1ph- | freemaster_defcfg 26.1.201211:07 C/C++ Header File 11 KE |
| IC149T-UCC-Poy | BB freemaster_private 27.7.201216:24 C/C++ Header File 18 KB|
| IC158T £| | freemaster_protocol 26.1.201211:07 C File 23KB|
10 IC162T_PLC Soft) | freemaster_protocol 26.1.2012 11:07 C/C++ Header File 9 KB |
| data ||| freemaster_rec 2612012 11:07 CFile 27KB|
| BB freemaster_rec 26..2012 11:07 C/C++ Header File 4KB|
- Libraries ||| freemaster_scope 261.201211:07 C File 5KB|
| | freemaster serial 6.3.2012 21:59 C File 36 KB |
18 Computer ||| freemaster_sfio 261.2012 11:07 C File 6 KB|
&, Primary (C) | _ freemaster tsa 2612012 11:07 CFile 10KB|
@ Inst_pe (WZCZ01. | BB freemaster tsa 26.1.201211:07 C/C++ Header File TKB|
5 view (\) (W)
g OrCAD (\zczlla
G FCL LIB (\zez01: ™
File pame: “freemaster_tsa" "freemaster_appcmd” "freemaster_bdm” "freemaster. + [*-" 'l
I Open I ’ Cancel l

Select how files should be imported intoe the project:

1 Link to files

W

[V] Create link locations relative to:

|Edit Variables... ~ |

Configure Drag and Drop Settings...

®@

| oK

J

Cancel]

FreeMASTER Usage, Rev. 0

Freescale Semiconductor

How do | create my first application with FreeMASTER in CodeWarrior 10.3?

Open =X
@u*ﬂ <« Freescale » FreeMASTER Serial Communication V1.6 » src_platforms » Koo - | +1>| | Search K jel [
Organize = MNew folder =~ O e
- \ - e Ciz

e Favorites MName Date modified Type Size
Bl Desktop freemaster 26.1.2012 11:07 C/C++ Header File 4 KB
& Downloads || freemaster_cfg.h.example 26.1.201211:07 EXAMPLE File 6 KB
= Recent Places |E | freemaster_Ke 26.1.2012 11:07 CFile TKE
1C135-LHB4-1ph- freemaster_Kaoc 26.1.2012 11:07 C/C++ Header File 21 KB
IC149T-UCC-Pov __ readme 26.1.2012 11:07 Text Document 2 KB
IC158T
1C162T_PLC_Soft,
data
= Libraries
"M Computer -
File name: "readme” "freemaster” "freemaster_cfg.h.example” "freemaster_foa" "freemi « |57 v|
[Open l | Cancel |

Choose the Copy Files into the project option. The previous operation will also create a Freemaster folder
in your workspace folder and copy the FreeMASTER serial driver files into the folder.

2.3 How to configure the FreeMASTER serial driver

All of the necessary FreeMASTER configuration is done in the freemaster_cfg.h file. You must do the
configuration here. In the following text is a shortened list of the settings and a description.

As the first step before we start configuring the driver, we have to rename the freemaster_cfg.h.example
file in the Project Explorer to freemaster_cfg.h and then open it. This file contains all the macro definitions
available for the FreeMASTER configuration.

/ xxxxxxxxxxxxxxxxxxx
* Select interrupt or poll-driven serial communication

ek e ek oo e e e ek /

#define FMSTR_LONG_INTR 0 /* complete message processing in interrupt */
#define FMSTR_SHORT_INTR 1 /* only SCI FIFO - queuing done in interrupt */
#define FMSTR_POLL_DRIVEN 0 /* no interrupt needed, polling only */

Exactly one of the three macros must be defined non-zero. The others must be defined zero or left
undefined. The non-zero-defined constant selects the interrupt mode of the driver.

FMSTR_LONG_INTR = 1

Serial communication and the FreeMASTER protocol decoding and execution is done in the FMSTR_Isr()
interrupt service routine. As the protocol execution may be a lengthy task, it is recommended to use this

FreeMASTER Usage, Rev. 0

10 Freescale Semiconductor

How do | create my first application with FreeMASTER in CodeWarrior 10.3?

mode only if the interrupt prioritization scheme is possible in the application, and if the FreeMASTER
interrupt is assigned to a lower (the lowest) priority.

FMSTR_SHORT_INTR = 1

The raw serial communication is handled by the FMSTR_Isr() interrupt service routine, while the protocol
decoding and execution is handled in the FMSTR_Poll() routine. You typically call the FMSTR_Poll()
during the idle time in the application ‘main loop’.

FMSTR_POLL_DRIVEN = 1

Both the serial (SCI/CAN) communication and the FreeMASTER protocol execution are done in the
FMSTR_Poll() routine. No interrupts are needed: the FMSTR_Isr() code compiles to an empty function.
When using this mode, you must ensure the FMSTR_Poll() function is called by an application at least
once per ‘SCI character time’, which is the time needed to transmit or receive a single character.

In our example, we will use the short interrupt mode as this is the most versatile.

/***

* Select communication interface (SClI, CAN, USB CDC or Packet Driven BDM)

#define FMSTR_SCI_BASE 0x4006D000 /* UART3 registers base address on K60 */
#define FMSTR_SCI_INTERRUPT 67 /* UART3 interrupt vector on K60 */

Here we have to show to the FreeMASTER serial driver which SCI peripheral will be used for
communication and its interrupt vector. The K60 Tower Board has UART3 mapped to the Tower Serial
board (TWR-SER board). You have to modify the values if another platform / SCI channel is used.
#define FMSTR_DISABLE 0 /* Disable all the FreeMASTER functionalities */

We typically use FreeMASTER as a debugging tool, while we don’t want to have it in the release code.
Setting the FMSTR_DISABLE to a non-zero value will remove FreeMASTER from your code.

#define FMSTR_USE_SCI 1 /* To select SCI communication interface */

#define FMSTR_USE_FLEXCAN 0 /* To select FIexCAN communication interface */

#define FMSTR_USE_USB_CDC 0 /* To select USB CDC communication interface */

#define FMSTR_USE_PDBDM 0 /* To select Packet Driven BDM comm. interface (optional) */

We will use UART communication in this example, so set FMSTR_USE_SCI to one while clearing the
other to zero. We also have to enable the most important serial driver features

#define FMSTR_USE_READMEM 1 /* enable/disable memory read / write*/
#define FMSTR_USE_SCOPE 1 /* enable/disable scope support */
#define FMSTR_USE_RECORDER 1 /* enable/disable recorder support */
#define FMSTR_USE_APPCMD 1 /* enable/disable App.Commands support */

There are other options in the file not mentioned here for simplicity. Refer to the FMSTRSCIDRVUG.pgf
document for more details.

24 FreeMASTER API short description

And finally, we must add some function calling to our code. Include the freemaster.h file in your code
everywhere you are calling the FreeMASTER API. The function headers of all the functions you need to
use are as follows:

For memory read/write and oscilloscope functionality, we need to use the three functions below.
FMSTR_BOOL FMSTR_Init(void); /* general FreeMASTER internal vars. initialization */

FreeMASTER Usage, Rev. 0

Freescale Semiconductor 11

How do | create my first application with FreeMASTER in CodeWarrior 10.3?

void FMSTR_Poll(void); /* polling call, use in SHORT_INTR and POLL_DRIVEN modes */
void FMSTR_Isr(void); /* interrupt handler for LONG_INTR and SHORT_INTR modes */

FMSTR_BOOL FMSTR_Init(void)

This function initializes internal variables of the FreeMASTER driver and enables the communication
interface (SCI, JTAG or CAN). This function does not change the configuration of the selected
communication module; the module must be initialized before the FMSTR_Init() function is called.

The FMSTR_Init() function must be called before any other FreeMASTER driver API function.
void FMSTR_Poll(void)

In the poll-driven or short interrupt modes, this function handles the protocol decoding and execution. In
the poll-driven mode, this function also handles the interface communication with the PC. Typically, you
call the FMSTR_Poll() during the 'idle’ time in the main application loop.

void FMSTR_Isr(void)

This is the interface to the interrupt service routine of the FreeMASTER serial driver. In the long or short
interrupt modes, this function must be set as the interrupt vector calling address. On platforms where
interface processing is split into multiple interrupts, this function should be set as a vector for each such
interrupt.

For the recorder functionality, we need to use the following functions

/* Recorder APl */

void FMSTR_Recorder(void)
void FMSTR_TriggerRec(void);
FMSTR_Recorder()

This function takes one sample of the variables being recorded using the FreeMASTER recorder. If the
recorder is not active at the moment when FMSTR_Recorder is called, the function returns immediately.
When the recorder is initialized and active, the values of the variables being recorded are copied to the
recorder buffer and the trigger condition is evaluated.

FMSTR_TriggerRec()
This function forces the recorder trigger condition to happen, which causes the recorder to be
automatically de-activated after post-trigger samples are sampled. This function can be used in the

application when it needs to have the trigger occurrence under its control. This function is optional; the
recorder can also be triggered by the PC tool or when the selected variable exceeds a threshold value.

2.5 What FreeMASTER API functions do | have to handle in my
application, and where?

Right now, we have an empty project prepared with all the necessary serial driver files included. In this

example, the short interrupt approach is used. We need to follow four steps to make the code functional.

FreeMASTER has to be initialized, the interrupt service routine has to be assigned to the IRQ vector and
the pooled part of the code must be called periodically. Of course, we need to include the freemaster.h file

FreeMASTER Usage, Rev. 0

12 Freescale Semiconductor

How do | create my first application with FreeMASTER in CodeWarrior 10.3?

in each file where the FreeMASTER API function is called: in this case, the main.c and kinetis_sysinit.c
files.

1. Call FMSTR_Init(void) just once at the code start, typically after the start-up code, at the beginning
of the main function.

2. Call FMSTR_Poll(void) periodically in your code. A typical place is in the main loop:

int main(void)

{
ConfigureMCUQ);
/* FreeMASTER internal variables initialization */
FMSTR_InitQ);
/* main loop */
for(G:) {
/* call function periodically*/
FMSTR_Poll1();
}
}
3. FMSTR_Isr() must be assigned to the UARTS3 interrupt vector. The kinetis_sysinit.c file contains
the vector table definition. Here, we can define the called FreeMASTER:
(tilsrFunc) FMSTR_Isr, /* 67 (0x0000010C) (prior: -) UART 3 status sources */
(tilsrFunc) FMSTR_Isr, /* 68 (0x00000110) (prior: -) UART 3 error sources */

4. The last thing is to configure all the necessary peripheries used in the example. The clock gates are
enabled, and the interrupt controller and UART have to be configured. After this fourth step, the
embedded code is ready to be compiled and run. Just build it, load it, and run the code. Now we
have to run and configure the FreeMASTER PC Application. The counter variable is here in the
code and will be visualized in FreeMASTER.

/* ARM Cortex M4 implementation for interrupt priority shift */

#define ARM_INTERRUPT_LEVEL_BITS 4

#define IRQ(X) (x)-16)

#define 1CPR_VALUE(X) (unsigned short) (1RQ(x)/32)
#define I1CPR_SHIFT(X) (unsigned short) (1RQ(x)%32)

/* Setting interrupt controller */

#define NVIC_Setlsr(src,ipr)\

{ NVIC_ICPR_REG(NVIC_BASE_PTR, ICPR_VALUE(src)) |= (unsigned long) (1l << ICPR_SHIFT(src));\
NVIC_ISER_REG(NVIC_BASE_PTR, ICPR_VALUE(src)) |= (unsigned long) (1l << ICPR_SHIFT(src));\
NVIC_IP_REG(NVIC_BASE_PTR, IRQ(src)) |= (unsigned long)((unsigned \

long) (ipr)<<ARM_INTERRUPT_LEVEL_BITS);}

/* UART3 baudrate */

#define brate 9600

/* Actual BUS CLOCK value */

#define bclk 21e6

/* Macro to calculate BAUDRATE register value */

#define CALC_SBR(brate,bclk) (unsigned short)((double)bclk/(16.0*(double)brate))

FreeMASTER Usage, Rev. 0

Freescale Semiconductor 13

FreeMASTER PC application configuration

#define CALC_BRFA(brate,bclk) ((unsigned
short) (((((double)bclk/(16.0*(double)brate))-(double)CALC_SBR(brate,bclk))*32.0)+0.5))

int counter = 0;

int main(void)

{

/* Enable clock to UART3 */
SIM_SCGC4 |= SIM_SCGC4_UART3_MASK;
SIM_SCGC5 |= SIM_SCGC5_PORTC_MASK;

/* Initialize pins shared with UART3 port */

/* Set PTC16 to UART mode and high drive strength */
PORTC_PCR16 |= PORT_PCR_MUX(3) |PORT_PCR_DSE_MASK;

/* Set PTC17 to UART mode and high drive strength */
PORTC_PCR17 |= PORT_PCR_MUX(3) | PORT_PCR_DSE_MASK;

/* Enable UART interrupt vectors and set their priority to 5 */
/* UART3 status sources number 51 */
NVIC_Setlsr(INT_UART3_RX_TX, 5);

/* UART3 error sources number 52 */

NVIC_Setlsr(INT_UART3_ERR, 5);

/* Set up UART3 periphery */

UART3_BDH = ((CALC_SBR(brate,bclk)>>8)&0x1f);
UART3_BDL = ((CALC_SBR(brate,bclk)>>0)&0xFF);
UART3_C4 = ((CALC_BRFA(brate,bclk)>>0)&0x1F);

/* Enable UART3 Transmitter and receiver */
UART3_C2 = UART_C2_ TE_MASK]UART_C2_RE_MASK;

This was the last step in the embedded application. We are ready to read out variable values from our
embedded application.

3 FreeMASTER PC application configuration

3.1 How to set up the communication channel

First of all, we have to run the FreeMASTER application from the Windows start menu. After the
application is started, go to Project -> Options -> Communication

where we set the communication port number and baudrate.

FreeMASTER Usage, Rev. 0

14 Freescale Semiconductor

4
FreeMASTER PC application configuration

[Project - FreeMASTER —
File Edit View Explorer Item (Project| Tools Help [E=5 Eo8
| = D|@® E)| f|sh|&| ¢ Variables..

1=5] New Project Commands...

Reload Symbol File Ctrl+M b
Select Symbol File...

Resource Files... : fr ees =
sen

-
Options = E R

Comm | MAP Fies | Pack Dir | HTML Pages | Demo Mode |
Communication
© BaRsz]

E%?I]é,omiﬂ, 5‘, ,—- \BSDU ﬂ?g—r lents impls
" Plugin Modue: [=] s 15

t sting]nm{:&i"?_@ck:] ;I L e 3

| ™ Savesettingstoprojectfle [Saye settings to registry, use it as defaul.

Communication state on startup and on project load Peiod
€ Open port at statup

' Do not open port at startup

" Store port state on ext, apply & on startup

[~ Store state to project file, apply upon its load Advanced.. |

ok | cael iy | e |

Edit project options |Not connected 4

3.2 MAP file selection

In the FreeMASTER window, we can easily choose the observed variables used in the embedded
application. FreeMASTER parses information stored in the MAP file during embedded application
linkage. The MAP file has all the information about the variables, their names, types, and addresses used
in the embedded application. The path to the MAP file must be set in the FreeMASTER PC application.
Select the correct path to the file and the file format created by the development tool. In this case, the MAP
file has an *.afx extension.

FreeMASTER Usage, Rev. 0

Freescale Semiconductor 15

FreeMASTER PC application configuration

@ FMSTR _SerialDriverDemo - FreeMASTER o || B &
File Edit View Explorer [temn Project Tools Help

| J|SE| 5|62 <=8 27| 2 22wl [FE 4+ e
@ New Project -
5% Mew Scope
Please specify the URL of the document describing the item currently
selected in the project tree.
Options @
Comm MAP Files |Pac.kDi'] HTML Pages | Demo Mode |
Default symbol file: [1STR_SerialDriverDemo\FLASH\FMSTR_SenalDriverDemo afd | .. 1
File fomat: [Binary ELF with DWARFT or DWARF2 dbg fomat. +| Edt || r each item in the
by setting up the
List of all vakd New.
symbol files: ool
view | | | of the project tree
Note: The file selected in the list wil be used as default symbol fle document URL are
when the project is opened
On Load
m I the Lse F P
[V Synchronize variables each time the symbol fil loads il
[¥ List emors (variables using undefined symbols)
* Mways (" Except after project load
Period
Ok | Cancel : Help
Ready [RS232:COMI,;speed=9600 y

3.3 How to choose the observed variable

Now, we are ready to observe the arbitrary variable values used in the embedded application. Create a new
watched variable by right mouse-clicking on the variable’s grid and select Create New Watch Var. In the
existing project, we have only a single variable named counter defined just above the main. Write the
variable name to the address field. If the variable is selected by the drop-down menu, the “Variable name:”
edit box is filled with the correct variable name. Then, click OK and the variable will appear in the grid.
By clicking the STOP icon, the communication is started. Now, the counter variable will appear in the grid
and its value is refreshed.

FreeMASTER Usage, Rev. 0

16 Freescale Semiconductor

4
FreeMASTER PC application configuration

———————1
B e e
File Edit View Explorer ltem Project Tools Help
| @|RI@E| =53] «llB] 27| o 2]l [+]$] @] Fwms 2 I e [1 P A
@ Mew Project A
2% New Scope ind
Variable ==
Please s
Definition | Modfying
selected I |
Vanable name: |e.ountu Sampling period: |1 sec ;] Show as: |[!EC j
+ Shg - Variabe S e ~ Bit fiekds ~ Show
b 1558 §
pnFEE 1) | Whebevsesoenes, || "I__,"" L
Type: |unsignedfedpoint shitt: [0 =] bis dght, and.. ER L - 2
If you dg | Sze: |4 'I bytes mask with; [no mask (-1) '| LlER el zermez the
project t he
single "d - Real type trar i ~Text ion (after
IMDne :" Lind: junit I~ Enumeration enabled I~ &hvays show numenc value
The Cont £t tree
selection Lare |
set up, b —I’ |
« Shd defauk: [urknown [¥ Show number
oK Canesl soy | e | =
algorithm block
| Name | value [Unit Period
'
------------- Edit variable...
Watch Properties...
Reset MIN/MAX
Reset MIN/MAX to All Vars
Create New Watched Var...
one lo New Watched
Remove From Watch
Create new variable and insert it into the watch RS5232;,COM1;speed=9600 y

The period value shows how often the variable’s value is refreshed in milliseconds. The 16-bit variable
counter is incremented in the main loop, so the variable overflows faster than the 400 ms refresh rate, and
the value shown in the grid seems to be chaotic. In fact, this is due to undersampling — Nyquist theorem
is not fulfilled. The same situation can be observed for the Scope.

FreeMASTER Usage, Rev. 0

Freescale Semiconductor 17

A
FreeMASTER PC application configuration

3 FMSTR_SerialDriverDemo - FreeMASTER =5 =R
File Edit View Explorer Item Project Tools Help
| @ H|@E| m|5ES| 2B 2] e = [a 4]$] |w?||J|—_lTahoma -6 < B|lru| @
Mew Project e
LA Mew Scope —
Please specify the URL of the document describing the item currently
selected in the project tree.
« Show me where can I do it 3
If you don't want to specify the description document for each item in the
project tree, you can hide the "tab" with this message by setting up the
single "Control Page".
The Control Page will be statically displayed regardless of the project tree
selection. When both Control Page and item description document URL are
set un hoth tabg will he available i

algarithm black description
MName | Value \ Unit | Period
courter HeEE i - | DEC 400
|RS232;COM1;speed=9500 4

3.4 How to set up the Scope

We can create a new Scope just by right clicking on the project and selecting Create Scope. Then, in the
drop-down menu, choose the counter variable, check it in the Graph vars list, and select the “Points+Line”

style.

FreeMASTER Usage, Rev. 0

18 Freescale Semiconductor

FreeMASTER PC application configuration

& FMSTR_SerialDriverDemo - FreeMASTER
File Edit View Explorer Jtem Project Tools Help

fIGI‘

| 2= OE| m|EE| s8] 20> o @)= E

1

Create Recorder ...

lease specify
t|1 nroinct

ron

Delete Scope Properties == =
Properties... Main | Setup I
— Graph vars: ﬂ ﬂ Assignment to Y blocks —Yhblock Left Axs I
g min Iﬁ v auto
If yo| [E—] 3| max [0 =] ¥ auto the
projd E— n =] he
singl H— g J | style: |Paints + Line -
1—]]
O0— O N 5
The — = Yhlock Right Axis tree i
| | Right : -
g T—] Jon | Sait ght axds vars m
min |-1D E ¥ auto
[EEE ~| .| Color | _Assign varsto block | = 1
colnty ma: ITD 3 ¥ auto
| Left s label: 1A we e
Hight =wis lebel: |45
ok | Cancd | Hep |

Create scope definition

[RS232:COMIspeed=9600 [

If we use a 400 ms refresh time, we have only three samples before counter overflows. Even if we have
the fastest communication possible, we can see only a few values out of the 21° states the counter variable

can get into. If we want to see all the counter increments, we need

to use the Recorder feature.

[FMSTR,_SerialDriverDemo - FreeMASTER
File Edit View 3Scope Hem Project Toels Help

L= @

@IE@@I %o|55| 3] «|=|m] 21| [2@l=le] Tl [#]¢] =¥

S e Scope E'%‘.e, . i . : :
ﬂﬂﬂﬂﬂ IR RERINEENINIIEINEERY
ﬂﬂﬂﬂﬂ D L0 TRy LI T L VT TR e D LT e d]
st LAY SU A YU (U R A TULRIN LT T
o N BT R R B LR
ﬂﬂﬂﬂﬂﬂ L Urer g Poeira e pryeue by v ey

MIRAREENNRRIIRE RN NS
slgorithm block descripton gsciloscope | -
Name \ Value Unit Period

eady

|RS232,COML;speed=9600

|Scope Running

V

FreeMASTER Usage, Rev. 0

Freescale Semiconductor

19

FreeMASTER PC application configuration

3.5 How to set up the Recorder

To enable the recorder in your embedded application, we have to show only a point in the embedded
project software where the variable values will be buffered. Use the FMSTR_Recorder() function calling
to do this. Modify the main loop simply by adding the Recorder function call

for(:) {
counter++;
FMSTR_Recorder();
FMSTR_Poll();
}

In each cycle after the counter variable is incremented, the FMSTR_Recorder() function is called and the
counter value is buffered to the Recorder buffer. It depends on the FreeMASTER PC application setting

when the buffer will be transferred to the PC. This may happen after the trigger conditions are fulfilled, or
by calling the FMSTR_TriggerRec() function.

3.6 How to configure the Recorder in the FreeMASTER PC
application

In the FreeMASTER PC application, right mouse-click to New Project and create Recorder. Then add the
counter variable to the Graph vars in the setup and define the trigger in Trigger. We have only the counter
variable, so we will select counter. The recorder buffer (in the embedded application) will be transferred
to the FreeMASTER PC application after the counter reaches the “Threshold” value of 21. Also, 20
pre-triggered values will be transferred.

[& FMSTR_SerialDriverDemo - FreeMASTER | Recorder Properties @ = ﬁE@
File Edit View Explorer Item Projeq Main [Sotop | Tagger |
= [-
= J0E —l—l—l ﬂi{- Graph vars: # ¥ Assgnment to Y blocks: Yblock Left Adis
b‘:mew Create SUBblock]) a min: [-10 3: ¥ aute
@ Ned Create Scope 1 a mag. |10 =W as
!1 3| s [Foris e~ ly selected
Delet =
& pmpmm J Y-block Right Axs
| | Rightadsvars: [0 «
| Recorder Properties @
counter i
Main | Setup [Trgger
Ifr Left mds label: [iAs Theeshold
gi Right ads label: [0 Trigger yariable: |[EXi AN ~ || .| Threshold vake:[21
| " Threshold value is in the raw format fno shift, masking and transformations)
TH {+ Back translate the threshold value info raw threshold value
Threshold crossing slope: ¢ posttive slope (negative slope
osigorkion ook e ooy Pretrigger samples: |20 =
Name
e 51529 I™ Force trigger vaniable freated as bool) i _I _[
Auto run
¥ Auto run mode (reactivate tigger after signal download)
¥ Hold tiggered signal: |1sec _vJ ftime to wait before reactivating trigger condition)
¥ Automatic stopping: |10secs v | fime-out when trigger condition do not execute)
Create recorder definition OK | Cancel Help

FreeMASTER Usage, Rev. 0

20 Freescale Semiconductor

Is there any easier way to integrate FreeMASTER into my project?

Using the Recorder, we can see all values of the counter variable from 0 to a defined buffer length, as
opposed to the Scope view. This is the way to visualize fast actions. The buffer length is limited by the
amount of RAM available in the microprocessor used.

3 FMSTR_SerialDriverDemo - FreeMASTER =n ==
File Edit View Recorder Item Project Tocols Help
=@ @|F Fl%6S| «|=lE] 2] Fer el
Mew Project
JE% New Scope counter
P Mew Recorder foo ' —]

] 1]

¥
w
=
el

=
o

[EE)

¥
g

il

E P
E -.."[
? e R
r

Holding received signal. v Autoload [Autostop W Auto run Stop

Lslooritm block description | recorden

Name Value Unit Period
counter 46076 DEC 400

Ready R5232;COMI;speed=9600 Rec Holding

4 Is there any easier way to integrate FreeMASTER into
my project?

4.1 How to set up a new project with FreeMASTER drivers integrated
by the Processor Expert

The Processor Expert is a rapid development tool integrated with CodeWarrior, which helps us with a
graphical Device Initialization Tool and a set of predefined functions. One of the many offered components
is the FreeMASTER serial driver. We need to simply click a few lines to set up FreeMASTER and UART
to have a completely pre-defined project stationery with FreeMASTER functionality. Run the
CodeWarrior in the same way as in the 2nd section and choose the New Project Wizard, but instead select
Rapid Application Development -> Processor Expert and click finish.

FreeMASTER Usage, Rev. 0

Freescale Semiconductor 21

Is there any easier way to integrate FreeMASTER into my project?

F -

¥ New Bareboard Project o (3]
Rapid Application Development

Processor Expert, Device Initialization

Rapid Application Development
) Ngne
") Device Initialization

Start with perspective designed for
") Hardware configuration (pin muxng and device initialization)

@ Use current perspective
Initialize all peripherals

Processor Expert can generate for you all the device initialization cede. It includes many -
low-level drivers,

@ Next > Finsh | [Cancel

4.2 How to add FreeMASTER serial drivers to the project

The Processor Expert will generate project stationery. Then, go to Component Library -> CPU External
Devices -> Display -> FreeMASTER and double click the FreeMASTER component.

The component will be added to the Component Explorer window.

FreeMASTER Usage, Rev. 0

22 Freescale Semiconductor

Is there any easier way to integrate FreeMASTER into my project?

3 C/Ces - CodeWarrior Development Studio = o |
Eile Edit Search Project Bun MQX Tools Processor Expert Window Help
IR R AG T S AT A8 S = ETes)
= CodeWarrior Projects 2 =0 l ’% Component Inspector - Cpu = m ¥=0
1';: B QP FileName N Categories _Alphabetical | Assistant| Processors
File Name Build
S FMSTR_ExampleCW1 Component Component Level
4 (= CPU External Devices
(= Display
High
High
b EC ster supported with SC1and JTAG
%5 Components - FMSTR_Example £ = 0| » & Logical Device Drivers
= = = || © & Operating Systems
chwa | e
= Generator_Configurations
i ram
& rLacH
= 0%
(= Processors
@ CpuMEGIDMNS12VLQLD
CpuMESIDM512VLO10
= Components Filter on for MKGODN512LQ10 (FMSTR_ExampleCWPE)
=0
P der 32] : 3
S 4 2! Problems 52 & Console - = |
~* Project Creation * Build/Debud | |0 items
g2 Import project &, Build (Al Description = Resource Path Location Type
4 Import example preject o Clean (Al
£y Import MCU executablefile %5 Debug
[Mew MCU project
[New MOQX-Lite project
4| . | 3
1) aEmY® G

4.3 How to set up the FreeMASTER functionality

Go to the Component inspector and modify the FMSTR1 component. We can enable the Scope and
Recorder functionality.

The short interrupt mode is preset. We can also see the red warning that the inherited UART component
has an incorrect setting, so we have to modify it.

FreeMASTER Usage, Rev. 0

Freescale Semiconductor 23

Is there any easier way to integrate FreeMASTER into my project?

4.4

O CodeWarrior Projects 82N

= 0 |(%y Components Library % *Component Inspector - FMSTRL R

33 C/C++ - CodeWarrior Development Studio =R
File Edit Search Project Run MQX Tools Processor Expert Window Help
e LIRS RE A) QLR R R e [Eee)

Advanced Expert |h:| v =0

laz | B % &L | File Name || & Properties . Methods| Events|
File Name Build Name Value Details o
i FMSTR_ExampleCWI Component name FMSTRL
Interrupt mode Mixed interrupt and polling mode
4 Y Device SCI
Y Init_UART Ipit LART VARD Error in the inherited component s..
4 Oscilloscope ' Enabled |
Maximum scope variables 8 - -
s Recorder Enabled 1
Maximum recorder variab § -
- N = User-allocated recorder Disabled
& Components - FMSTR Example ¢ = Recorder buffer length 256 bl
= 5% Y| » Application command Disabled
& FLASH - b Target-side addressing Disabled
&= 0% 4 Initialization
(& Processors F 4 Read/write memory con Enabled
@ Cpu:MKSODN512VLQ10 = Read memory Enabled
& Cpu:MKE0DN512VLQ10 i Write memory Enabled =
| e -| =5
3 v = L - 1
&4 Commander &2 = 8 Ef_ reT— o B o0
v Project Creation ~ Build/Debuc| |1 error, 2 warnings, 0 others . .
£y Import project & Build (Al Description - Resource Path Location Type
™4 Import example project o Clean {(All) O Errors (L item)
pxg Import MCU executablefile %5 Debug & Warmings (2 items)
4 New MCU project
Y Mew MQX-Lite project
4 [3 4 [| 2
. A EY S

How to set up the UART parameters

Click on the FMSTR_UART1 component in the Component Explorer and the component settings appear
in the Component Inspector, where all the necessary settings are done.

We will select the UART3 module, enable the clock to the module, and set the baud rate divisor to get a
proper communication speed (9600 bps). The pins used by UART3 must be selected and enabled:

FreeMASTER Usage, Rev. 0

24

Freescale Semiconductor

Is there any easier way to integrate FreeMASTER into my project?

pac..-mewm«mdopmm.o

=3 EeE
Eile Edit Search Project Run MQXTools ProcessorExpert Window Help
AR A% F- m& F-if-ip-§ MG £ (B ce]
|23 Codewarrior Projects 53 . 59| %) Components Library [*Component Ins [Basic) Advanced Expet [y 7 = O
laz | =] Q:T) £ | File Name | N Frop:dl:s\‘_!delhuds
FileName Build Name Details -
55 FMSTR BampleCW! Deviee UART3 UART3
Fl Settings
a2 Clock settings
Baud rate divisor . .
Baud rate fine adjust 17 .
1 Baud rate 9600.1465 baud -
(o > = [Transfer settings
5. Components - FMSTR_Example £2 a “
g =i \-7_, Data format 8bit
ER-AE Bits ordering LSB first
i@ CpuMKS0DNS12VLQ10 - Parity off
ﬂ Cpu:MKGODN512VLO10 Parity placement Parity in last data bit
(= Components Idle character counting After start bit
FMSTRI:FreeMaster Break character generation length Short
FMSTR_UARTL:Init_UART(FreeMast LIN Break detection Enabled
o Stop in Wait mode Disabled
B Recorder » Receiver wakeup settings
B Triggerec » Modem settings
$ SetUpRecBuff 3 Infrared settings
$ GetAppCmd 3 FIFOs settings
8 GetAppCmdData x: p Loops and Single wire settings
sl il E Receiver input Not inverted
(#% Commander Eé . g a) Transmitter output Not inverted
Pl Pins/Signals
= Project Creation = Build/Debu¢ Fl Receiver pin Enalblael
dxg Import project & Build (Al Pin PTC16/CANL_RX/UART3_RX/ENET...| PTC16/CANL_RX/UARTS_RX/ENET...
% Import example project Clean (Al 4 Transmitter pin
2ey Import MCU executablefile %5 Debug Pin) PTC17/CANI_TX/UART3_TW/ENET...
2 NewMCU prjec + Settings — o SEEC -
i -Lite project
5 New MQ. € proje & Project set < [r |
T Build settin =5
%% Debug sett ‘
PN —T— N ‘M_,Pmblem;SS\ECnrmle a’aﬂ;
i pe - Gﬁl@‘.“‘}@\

4.5 How to modify code in the application

The only thing in the embedded code we have to do is to add the FMSTR_Poll() functional calling to the
code where it will be called periodically. All the rest is resolved in the Processor Expert starting code. We
can modify the ProcessorExpert.c file in the following way:

FreeMASTER Usage, Rev. 0

Freescale Semiconductor 25

Final words

¥ C/C++ - FMSTR_ExampleCWPE/Sources/ProcessorExpert.c - CodeWarrior Develog Studio =8 E=R
File Edit Search Project Run MQXTools ProcessorExpert Window Help
-H@ R-% F~-ifam R - B O = [Ecrc-)
[T CodeWarrior Projects 22 =] (% Components Library (% *Component Inspector - FMSTRL &% Advanced Expert I]Ih = EW
i“izl B G £ | File Name ~ “ProcessorExpert.c =g
fhlang Buld N 26 #include "I():."Iap.h" -

% Processorbxpert.
= Project_Headers
(= Project_Settings
= RAM
= Sources
[£] Events.c v
m Events.h v
@ ProcessorExg v

=

5 Components - FMSTR_Example 2
SR -1

& FLASH
= 05s
[Z= Processors
4 CpuMKB0DNS12VLO10
@ CpuMKEODNS12VLO10
= Components

L2 ST
&3 Commander &3 =T =
~ Project Creation ~ Build/Debu
23 Import project &, Build (Al
% Import example project '(Clean (Al

£y Import MCU executable file
% New MCU project
% New MQX-Lite project

27

28 /* User includes (#include below this line is not maintained by Processor Expert) */
29 unsigned char counter;

@ /*1int -save -e97@ Disable MISRA rule (6.3) checking. */

1 int main(wvoid)

2 /*1lint -restore Enable MISRA rule (6.3) checking. */

2 {
/* Write your local variable definition here */
/*** Processor Expert internal initializatign. DON'T REMOVE THIS CODE!!! ===/
PE_low level init(); | _
/*** end of Processor Expert internal initialization. xxxf

/* Write your code here */

/* For example: for(;;) { } */

for(35) |
counter++;
FMSTR_Recorder();
FMSTR_Pall();

mn

/*** Don't write any code pass this line, or it will be deleted during code generatior

/*** RTOS startup code. Macro PEX_RTOS_START is defined by the RTOS component. DON'T i)

#ifdef PEX_RTOS_START
PEX_RTOS_START();

/* Startup of the selected RTOS. Macro is defines

fendif b
/*** end of RTOS startup code. **%/
/*** Processor Expert end of main routine. DON'T MODIFY THIS CODE!!! **=/
for(53){}
/*** Processor Expert end of main routine. DON'T WRITE CODE BELOW!!! **=/
6} /*** End of main routine. DO NOT MODIFY THIS TEXT!I! **%/ -
4 m] F

(E'_\ Problems &3 ECorlsoleW YT E]

o* | Writable

B @II

Smart Insert | 42:13

Then, the application is prepared and we can run it and again observe the counter variable in the
FreeMASTER PC application.

5

Final words

There are situations when developing embedded applications where we need to see the application internal
states in real time or where a graphical visualization helps with the debugging. FreeMASTER offers both
of these in a very appropriate way and is easy to use. Adding serial drivers to the application requires only
a few steps, and then we can enjoy the user friendly FreeMASTER application to observe those internal

states.

FreeMASTER Usage, Rev. 0

26

Freescale Semiconductor

THIS PAGE IS INTENTIONALLY BLANK

FreeMASTER Usage, Rev. 0

Freescale Semiconductor

27

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and software
implementers to use Freescale products. There are no express or implied copyright
licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products
herein. Freescale makes no warranty, representation, or guarantee regarding the
suitability of its products for any particular purpose, nor does Freescale assume any
liability arising out of the application or use of any product or circuit, and specifically
disclaims any and all liability, including without limitation consequential or incidental
damages. “Typical” parameters that may be provided in Freescale data sheets and/or
specifications can and do vary in different applications, and actual performance may
vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. Freescale does not convey any
license under its patent rights nor the rights of others. Freescale sells products pursuant
to standard terms and conditions of sale, which can be found at the following address:

freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+,Energy
Efficient Solutions logo, PowerQUICC, QorlQ, StarCore, Symphony, and VortiQa are
trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. CoreNet,
Layerscape, QorlQ Qonverge, QUICC Engine, Tower, and Xtrinsic are trademarks of
Freescale Semiconductor, Inc. All other product or service names are the property of
their respective owners.

© 2013 Freescale Semiconductor, Inc.

Document Number: AN4752
Rev. 0
5/2013

" freescale"

	1 What are the FreeMASTER serial driver and FreeMASTER PC application?
	1.1 I want it - where do I get the FreeMASTER serial driver?
	1.2 What can I find on the hard drive?
	1.3 What features does the serial driver offer?

	2 How do I create my first application with FreeMASTER in CodeWarrior 10.3?
	2.1 How to create an empty bareboard project stationery using CodeWarrior 10.3
	2.2 How to add the FreeMASTER communication driver files to the project
	2.3 How to configure the FreeMASTER serial driver
	2.4 FreeMASTER API short description
	2.5 What FreeMASTER API functions do I have to handle in my application, and where?

	3 FreeMASTER PC application configuration
	3.1 How to set up the communication channel
	3.2 MAP file selection
	3.3 How to choose the observed variable
	3.4 How to set up the Scope
	3.5 How to set up the Recorder
	3.6 How to configure the Recorder in the FreeMASTER PC application

	4 Is there any easier way to integrate FreeMASTER into my project?
	4.1 How to set up a new project with FreeMASTER drivers integrated by the Processor Expert
	4.2 How to add FreeMASTER serial drivers to the project
	4.3 How to set up the FreeMASTER functionality
	4.4 How to set up the UART parameters
	4.5 How to modify code in the application

	5 Final words

