
Freescale Semiconductor
Application Note

Document Number: AN4752
Rev. 0, 5/2013

Contents
What are the FreeMASTER serial driver and FreeMASTER
PC application? . 1

1.1 I want it — where do I get the FreeMASTER
serial driver? . 2

1.2 What can I find on the hard drive?. 4
1.3 What features does the serial driver offer? 5
How do I create my first application with FreeMASTER
in CodeWarrior 10.3? . 5

2.1 How to create an empty bareboard project
stationery using CodeWarrior 10.3 5

2.2 How to add the FreeMASTER communication driver
files to the project . 7

2.3 How to configure the FreeMASTER serial driver. . 10
2.4 FreeMASTER API short description 11
2.5 What FreeMASTER API functions do I have to

handle in my application, and where? 12
3 FreeMASTER PC application configuration 14

3.1 How to set up the communication channel 14
3.2 MAP file selection . 15
3.3 How to choose the observed variable 16
3.4 How to set up the Scope . 18
3.5 How to set up the Recorder. 20
3.6 How to configure the Recorder in the FreeMASTER

PC application . 20
4 Is there any easier way to integrate FreeMASTER into

my project? . 21
4.1 How to set up a new project with FreeMASTER

drivers integrated by the Processor Expert 21
4.2 How to add FreeMASTER serial drivers to the

project . 22
4.3 How to set up the FreeMASTER functionality 23
4.4 How to set up the UART parameters. 24
4.5 How to modify code in the application 25

5 Final words . 26

FreeMASTER Usage
Serial driver implementation
Radomir Kozub
Roznov, Czech Republic

The FreeMASTER serial driver is a piece of code that
enables an embedded application to communicate with
the FreeMASTER PC application. This application note
shows how to add the FreeMASTER serial driver to your
embedded code.

1 What are the FreeMASTER
serial driver and
FreeMASTER PC
application?

FreeMASTER is a PC-based development tool serving
as a real-time monitor, visualization tool, and graphical
control panel of embedded applications based on
Freescale Semiconductor processing units.

The FreeMASTER PC application repetitively sends a
request for the immediate values of chosen variables
used in the embedded application (the PC application
acts as the master in this peer-to-peer communication).

1

2

© Freescale Semiconductor, Inc., 2013. All rights reserved.

What are the FreeMASTER serial driver and FreeMASTER PC application?
The embedded application replies with the actual value of the variable (the embedded application acts as
a slave in the communication). The FreeMASTER PC Application visualizes the variable value. The piece
of embedded code that takes care of responding to a request is called the FreeMASTER serial driver. This
driver carries out protocol parsing, prepares responses, and handles the communication periphery. The
serial driver covers the UART SCI and CAN communication for all supported devices, and the
EOnCE/JTAG communication for the 56F8xxx family of hybrid microcontrollers.

This document describes how to add the FreeMASTER serial driver software to your embedded
application and configure it.

Go to http://www.freescale.com/Freemaster to get the latest version of the FreeMASTER PC application,
as well as the FreeMASTER serial drivers.

All details about the communication protocol and the FreeMASTER PC application may be found in the
FreeMASTER installation folder in the documents mcbcom.pdf and pcm_um.pdf. The default installation
path is preset to c:\Program Files\Freescale\FreeMASTER 1.3\

1.1 I want it — where do I get the FreeMASTER serial driver?
Go to the http://www.freescale.com/Freemaster download section, download the FMASTERSCIDRV.exe
file and run the installation. Run through the welcome page and license agreement, then choose the path
on where to install the serial driver files. The installer will unpack all the selected files — the driver source
files, examples, and documentation — into the chosen directory.
FreeMASTER Usage, Rev. 0

Freescale Semiconductor2

http://www.freescale.com/Freemaster
http://www.freescale.com/Freemaster

What are the FreeMASTER serial driver and FreeMASTER PC application?
You may either choose only those drivers for the platform you are planning to use (e.g. Kxx Kinetis ARM
Processors) or choose a complete installation. Then, go through the installation wizard and finish it.
FreeMASTER Usage, Rev. 0

Freescale Semiconductor 3

What are the FreeMASTER serial driver and FreeMASTER PC application?
1.2 What can I find on the hard drive?
On the installation path is the ..\FreeMASTER Serial Communication V1.6 directory, which contains the
following subfolders:

• doc — It’s worth reading the document that outlines all the important details on the serial driver
software.

• examples — The quickest way to run your first application with FreeMASTER is to open and
modify a bareboard example application. Examples are already prepared for all the supported
platforms (processors) for CodeWarrior and IAR development tools. For the Kinetis ARM
processors, examples cover the K40 KWICSTICK and the K60N512 Tower board.

• src_common — This directory contains the common driver source files shared around all the
supported platforms. All the *.c and *.h files in the directory should be added to your project,
compiled and linked together with your application.

• src_platforms — This folder contains subfolders with platform-specific parts of the serial driver
(Kxx, 56F8xxx, HC08, HC12, MPC55xx, etc.). Your application needs only those files in the
platform-specific subfolder. For the Kinetis ARM processor, you must add only the *.c and *.h files
from the Kxx subfolder.

• support — Contains those files needed for virtual serial com port usage.
FreeMASTER Usage, Rev. 0

Freescale Semiconductor4

How do I create my first application with FreeMASTER in CodeWarrior 10.3?
1.3 What features does the serial driver offer?
The FreeMASTER serial driver implements all the features necessary to establish a communication
between your embedded application and the FreeMASTER PC application. Communication may use one
of the following hardware layers: SCI, EOnCE/JTAG (56F8xxx Hybrid DSC), CAN, or Packet-Driven
BDM.

The most important serial driver functions are:

• Read/Write — Access to any memory location to read / modify an arbitrary variable or register.

• Oscilloscope access — Optimized real time reading of up to eight variables in one shot (all
requested variables are read in a very short time), used for the graph visualization tool termed
Scope in the FreeMASTER PC Application.

• Recorder — If observed variables are changing fast, the bandwidth limited serial line can’t transfer
the variable real time values. The recorder feature allows you to store the observed variables’ real
time data to the buffer in the embedded application and to transfer the buffer to the FreeMASTER
PC application when the trigger event occurs. The transferred data is then visualized by the
Recorder component of the FreeMASTER PC application. The buffer length is limited by the
amount of available memory in the processor, or to 64KB.

• Application commands — High-level message delivery from the PC to the application.

• Target-side Addressing (TSA) — With this feature, you are able to describe the variables and
structure data types directly in the application source code and make this information available for
the FreeMASTER application tool. The tool may then use this information instead of reading it
from the application’s ELF/Dwarf executable file.

2 How do I create my first application with FreeMASTER
in CodeWarrior 10.3?

2.1 How to create an empty bareboard project stationery using
CodeWarrior 10.3

We can use the create project wizard to create stationery containing all the necessary files to load and flash
an empty project. The stationery contains processor header files, a linker file, start-up code, C initialization
code, device initialization, and an empty main.

Select the folder where the project will be created.
FreeMASTER Usage, Rev. 0

Freescale Semiconductor 5

How do I create my first application with FreeMASTER in CodeWarrior 10.3?
Then choose the New Project Wizard, choose a project name, and pick the device to be used. This example
uses the MK60DN512 processor on the TWR-K60D100M tower board:
FreeMASTER Usage, Rev. 0

Freescale Semiconductor6

How do I create my first application with FreeMASTER in CodeWarrior 10.3?
Then check the chosen connection board. This example doesn’t use the Processor Expert Rapid
Development tool, so select None in the Rapid Application Development window. The final step is to click
on Finish and the empty project is created.

2.2 How to add the FreeMASTER communication driver files to the
project

In the Project Explorer window, right mouse-click to FMSTR_SerialDriver project, select New -> Folder,
and create a new folder Freemaster.
FreeMASTER Usage, Rev. 0

Freescale Semiconductor 7

How do I create my first application with FreeMASTER in CodeWarrior 10.3?
Right mouse-click to the Freemaster folder, choose Add files, and add all the files from the src_common
directory along with the platform dependent files from the src_platform directory. In the Kinetis ARM
processor case, we add files from the Kxx subdirectory.

FreeMASTER Usage, Rev. 0

Freescale Semiconductor8

How do I create my first application with FreeMASTER in CodeWarrior 10.3?
FreeMASTER Usage, Rev. 0

Freescale Semiconductor 9

How do I create my first application with FreeMASTER in CodeWarrior 10.3?
Choose the Copy Files into the project option. The previous operation will also create a Freemaster folder
in your workspace folder and copy the FreeMASTER serial driver files into the folder.

2.3 How to configure the FreeMASTER serial driver
All of the necessary FreeMASTER configuration is done in the freemaster_cfg.h file. You must do the
configuration here. In the following text is a shortened list of the settings and a description.

As the first step before we start configuring the driver, we have to rename the freemaster_cfg.h.example
file in the Project Explorer to freemaster_cfg.h and then open it. This file contains all the macro definitions
available for the FreeMASTER configuration.
/**
* Select interrupt or poll-driven serial communication
**/

#define FMSTR_LONG_INTR 0 /* complete message processing in interrupt */
#define FMSTR_SHORT_INTR 1 /* only SCI FIFO - queuing done in interrupt */
#define FMSTR_POLL_DRIVEN 0 /* no interrupt needed, polling only */

Exactly one of the three macros must be defined non-zero. The others must be defined zero or left
undefined. The non-zero-defined constant selects the interrupt mode of the driver.
FMSTR_LONG_INTR = 1

Serial communication and the FreeMASTER protocol decoding and execution is done in the FMSTR_Isr()
interrupt service routine. As the protocol execution may be a lengthy task, it is recommended to use this
FreeMASTER Usage, Rev. 0

Freescale Semiconductor10

How do I create my first application with FreeMASTER in CodeWarrior 10.3?
mode only if the interrupt prioritization scheme is possible in the application, and if the FreeMASTER
interrupt is assigned to a lower (the lowest) priority.
FMSTR_SHORT_INTR = 1

The raw serial communication is handled by the FMSTR_Isr() interrupt service routine, while the protocol
decoding and execution is handled in the FMSTR_Poll() routine. You typically call the FMSTR_Poll()
during the idle time in the application ‘main loop’.
FMSTR_POLL_DRIVEN = 1

Both the serial (SCI/CAN) communication and the FreeMASTER protocol execution are done in the
FMSTR_Poll() routine. No interrupts are needed: the FMSTR_Isr() code compiles to an empty function.
When using this mode, you must ensure the FMSTR_Poll() function is called by an application at least
once per ‘SCI character time’, which is the time needed to transmit or receive a single character.

In our example, we will use the short interrupt mode as this is the most versatile.
/***
* Select communication interface (SCI, CAN, USB CDC or Packet Driven BDM)
**/
#define FMSTR_SCI_BASE 0x4006D000 /* UART3 registers base address on K60 */
#define FMSTR_SCI_INTERRUPT 67 /* UART3 interrupt vector on K60 */

Here we have to show to the FreeMASTER serial driver which SCI peripheral will be used for
communication and its interrupt vector. The K60 Tower Board has UART3 mapped to the Tower Serial
board (TWR-SER board). You have to modify the values if another platform / SCI channel is used.
#define FMSTR_DISABLE 0 /* Disable all the FreeMASTER functionalities */

We typically use FreeMASTER as a debugging tool, while we don’t want to have it in the release code.
Setting the FMSTR_DISABLE to a non-zero value will remove FreeMASTER from your code.
#define FMSTR_USE_SCI 1 /* To select SCI communication interface */
#define FMSTR_USE_FLEXCAN 0 /* To select FlexCAN communication interface */
#define FMSTR_USE_USB_CDC 0 /* To select USB CDC communication interface */
#define FMSTR_USE_PDBDM 0 /* To select Packet Driven BDM comm. interface (optional) */

We will use UART communication in this example, so set FMSTR_USE_SCI to one while clearing the
other to zero. We also have to enable the most important serial driver features
#define FMSTR_USE_READMEM 1 /* enable/disable memory read / write*/
#define FMSTR_USE_SCOPE 1 /* enable/disable scope support */
#define FMSTR_USE_RECORDER 1 /* enable/disable recorder support */
#define FMSTR_USE_APPCMD 1 /* enable/disable App.Commands support */

There are other options in the file not mentioned here for simplicity. Refer to the FMSTRSCIDRVUG.pgf
document for more details.

2.4 FreeMASTER API short description
And finally, we must add some function calling to our code. Include the freemaster.h file in your code
everywhere you are calling the FreeMASTER API. The function headers of all the functions you need to
use are as follows:

For memory read/write and oscilloscope functionality, we need to use the three functions below.
FMSTR_BOOL FMSTR_Init(void); /* general FreeMASTER internal vars. initialization */
FreeMASTER Usage, Rev. 0

Freescale Semiconductor 11

How do I create my first application with FreeMASTER in CodeWarrior 10.3?
void FMSTR_Poll(void); /* polling call, use in SHORT_INTR and POLL_DRIVEN modes */
void FMSTR_Isr(void); /* interrupt handler for LONG_INTR and SHORT_INTR modes */

FMSTR_BOOL FMSTR_Init(void)

This function initializes internal variables of the FreeMASTER driver and enables the communication
interface (SCI, JTAG or CAN). This function does not change the configuration of the selected
communication module; the module must be initialized before the FMSTR_Init() function is called.

The FMSTR_Init() function must be called before any other FreeMASTER driver API function.
void FMSTR_Poll(void)

In the poll-driven or short interrupt modes, this function handles the protocol decoding and execution. In
the poll-driven mode, this function also handles the interface communication with the PC. Typically, you
call the FMSTR_Poll() during the 'idle' time in the main application loop.
void FMSTR_Isr(void)

This is the interface to the interrupt service routine of the FreeMASTER serial driver. In the long or short
interrupt modes, this function must be set as the interrupt vector calling address. On platforms where
interface processing is split into multiple interrupts, this function should be set as a vector for each such
interrupt.

For the recorder functionality, we need to use the following functions
/* Recorder API */
void FMSTR_Recorder(void)
void FMSTR_TriggerRec(void);
FMSTR_Recorder()

This function takes one sample of the variables being recorded using the FreeMASTER recorder. If the
recorder is not active at the moment when FMSTR_Recorder is called, the function returns immediately.
When the recorder is initialized and active, the values of the variables being recorded are copied to the
recorder buffer and the trigger condition is evaluated.
FMSTR_TriggerRec()

This function forces the recorder trigger condition to happen, which causes the recorder to be
automatically de-activated after post-trigger samples are sampled. This function can be used in the
application when it needs to have the trigger occurrence under its control. This function is optional; the
recorder can also be triggered by the PC tool or when the selected variable exceeds a threshold value.

2.5 What FreeMASTER API functions do I have to handle in my
application, and where?

Right now, we have an empty project prepared with all the necessary serial driver files included. In this
example, the short interrupt approach is used. We need to follow four steps to make the code functional.
FreeMASTER has to be initialized, the interrupt service routine has to be assigned to the IRQ vector and
the pooled part of the code must be called periodically. Of course, we need to include the freemaster.h file
FreeMASTER Usage, Rev. 0

Freescale Semiconductor12

How do I create my first application with FreeMASTER in CodeWarrior 10.3?
in each file where the FreeMASTER API function is called: in this case, the main.c and kinetis_sysinit.c
files.

1. Call FMSTR_Init(void) just once at the code start, typically after the start-up code, at the beginning
of the main function.

2. Call FMSTR_Poll(void) periodically in your code. A typical place is in the main loop:

int main(void)
{
 ConfigureMCU();
 /* FreeMASTER internal variables initialization */
 FMSTR_Init();

 /* main loop */
 for(;;) {

 /* call function periodically*/
 FMSTR_Poll();
 }
}

3. FMSTR_Isr() must be assigned to the UART3 interrupt vector. The kinetis_sysinit.c file contains
the vector table definition. Here, we can define the called FreeMASTER:

 (tIsrFunc) FMSTR_Isr, /* 67 (0x0000010C) (prior: -) UART 3 status sources */
 (tIsrFunc) FMSTR_Isr, /* 68 (0x00000110) (prior: -) UART 3 error sources */

4. The last thing is to configure all the necessary peripheries used in the example. The clock gates are
enabled, and the interrupt controller and UART have to be configured. After this fourth step, the
embedded code is ready to be compiled and run. Just build it, load it, and run the code. Now we
have to run and configure the FreeMASTER PC Application. The counter variable is here in the
code and will be visualized in FreeMASTER.

/* ARM Cortex M4 implementation for interrupt priority shift */
#define ARM_INTERRUPT_LEVEL_BITS 4
#define IRQ(x) ((x)-16)
#define ICPR_VALUE(x) (unsigned short)(IRQ(x)/32)
#define ICPR_SHIFT(x) (unsigned short)(IRQ(x)%32)

/* Setting interrupt controller */
#define NVIC_SetIsr(src,ipr)\
{ NVIC_ICPR_REG(NVIC_BASE_PTR,ICPR_VALUE(src)) |= (unsigned long)(1l << ICPR_SHIFT(src));\
 NVIC_ISER_REG(NVIC_BASE_PTR,ICPR_VALUE(src)) |= (unsigned long)(1l << ICPR_SHIFT(src));\
 NVIC_IP_REG(NVIC_BASE_PTR,IRQ(src)) |= (unsigned long)((unsigned \
long)(ipr)<<ARM_INTERRUPT_LEVEL_BITS);}

/* UART3 baudrate */
#define brate 9600
/* Actual BUS CLOCK value */
#define bclk 21e6
/* Macro to calculate BAUDRATE register value */
#define CALC_SBR(brate,bclk) (unsigned short)((double)bclk/(16.0*(double)brate))
FreeMASTER Usage, Rev. 0

Freescale Semiconductor 13

FreeMASTER PC application configuration
#define CALC_BRFA(brate,bclk) ((unsigned
short)(((((double)bclk/(16.0*(double)brate))-(double)CALC_SBR(brate,bclk))*32.0)+0.5))

int counter = 0;

int main(void)
{

 /* Enable clock to UART3 */
 SIM_SCGC4 |= SIM_SCGC4_UART3_MASK;
 SIM_SCGC5 |= SIM_SCGC5_PORTC_MASK;

 /* Initialize pins shared with UART3 port */
 /* Set PTC16 to UART mode and high drive strength */
 PORTC_PCR16 |= PORT_PCR_MUX(3)|PORT_PCR_DSE_MASK;
 /* Set PTC17 to UART mode and high drive strength */
 PORTC_PCR17 |= PORT_PCR_MUX(3)|PORT_PCR_DSE_MASK;

 /* Enable UART interrupt vectors and set their priority to 5 */
 /* UART3 status sources number 51 */
 NVIC_SetIsr(INT_UART3_RX_TX, 5);
 /* UART3 error sources number 52 */
 NVIC_SetIsr(INT_UART3_ERR, 5);

 /* Set up UART3 periphery */
 UART3_BDH = ((CALC_SBR(brate,bclk)>>8)&0x1f);
 UART3_BDL = ((CALC_SBR(brate,bclk)>>0)&0xff);
 UART3_C4 = ((CALC_BRFA(brate,bclk)>>0)&0x1f);

 /* Enable UART3 Transmitter and receiver */
 UART3_C2 = UART_C2_TE_MASK|UART_C2_RE_MASK;

This was the last step in the embedded application. We are ready to read out variable values from our
embedded application.

3 FreeMASTER PC application configuration

3.1 How to set up the communication channel
First of all, we have to run the FreeMASTER application from the Windows start menu. After the
application is started, go to Project -> Options -> Communication

where we set the communication port number and baudrate.
FreeMASTER Usage, Rev. 0

Freescale Semiconductor14

FreeMASTER PC application configuration
3.2 MAP file selection
In the FreeMASTER window, we can easily choose the observed variables used in the embedded
application. FreeMASTER parses information stored in the MAP file during embedded application
linkage. The MAP file has all the information about the variables, their names, types, and addresses used
in the embedded application. The path to the MAP file must be set in the FreeMASTER PC application.
Select the correct path to the file and the file format created by the development tool. In this case, the MAP
file has an *.afx extension.
FreeMASTER Usage, Rev. 0

Freescale Semiconductor 15

FreeMASTER PC application configuration
3.3 How to choose the observed variable
Now, we are ready to observe the arbitrary variable values used in the embedded application. Create a new
watched variable by right mouse-clicking on the variable’s grid and select Create New Watch Var. In the
existing project, we have only a single variable named counter defined just above the main. Write the
variable name to the address field. If the variable is selected by the drop-down menu, the “Variable name:”
edit box is filled with the correct variable name. Then, click OK and the variable will appear in the grid.
By clicking the STOP icon, the communication is started. Now, the counter variable will appear in the grid
and its value is refreshed.
FreeMASTER Usage, Rev. 0

Freescale Semiconductor16

FreeMASTER PC application configuration
The period value shows how often the variable’s value is refreshed in milliseconds. The 16-bit variable
counter is incremented in the main loop, so the variable overflows faster than the 400 ms refresh rate, and
the value shown in the grid seems to be chaotic. In fact, this is due to undersampling — Nyquist theorem
is not fulfilled. The same situation can be observed for the Scope.
FreeMASTER Usage, Rev. 0

Freescale Semiconductor 17

FreeMASTER PC application configuration
3.4 How to set up the Scope
We can create a new Scope just by right clicking on the project and selecting Create Scope. Then, in the
drop-down menu, choose the counter variable, check it in the Graph vars list, and select the “Points+Line”
style.
FreeMASTER Usage, Rev. 0

Freescale Semiconductor18

FreeMASTER PC application configuration
If we use a 400 ms refresh time, we have only three samples before counter overflows. Even if we have
the fastest communication possible, we can see only a few values out of the 216 states the counter variable
can get into. If we want to see all the counter increments, we need to use the Recorder feature.
FreeMASTER Usage, Rev. 0

Freescale Semiconductor 19

FreeMASTER PC application configuration
3.5 How to set up the Recorder
To enable the recorder in your embedded application, we have to show only a point in the embedded
project software where the variable values will be buffered. Use the FMSTR_Recorder() function calling
to do this. Modify the main loop simply by adding the Recorder function call
for(;;) {

 counter++;
 FMSTR_Recorder();
 FMSTR_Poll();
}

In each cycle after the counter variable is incremented, the FMSTR_Recorder() function is called and the
counter value is buffered to the Recorder buffer. It depends on the FreeMASTER PC application setting
when the buffer will be transferred to the PC. This may happen after the trigger conditions are fulfilled, or
by calling the FMSTR_TriggerRec() function.

3.6 How to configure the Recorder in the FreeMASTER PC
application

In the FreeMASTER PC application, right mouse-click to New Project and create Recorder. Then add the
counter variable to the Graph vars in the setup and define the trigger in Trigger. We have only the counter
variable, so we will select counter. The recorder buffer (in the embedded application) will be transferred
to the FreeMASTER PC application after the counter reaches the “Threshold” value of 21. Also, 20
pre-triggered values will be transferred.
FreeMASTER Usage, Rev. 0

Freescale Semiconductor20

Is there any easier way to integrate FreeMASTER into my project?
Using the Recorder, we can see all values of the counter variable from 0 to a defined buffer length, as
opposed to the Scope view. This is the way to visualize fast actions. The buffer length is limited by the
amount of RAM available in the microprocessor used.

4 Is there any easier way to integrate FreeMASTER into
my project?

4.1 How to set up a new project with FreeMASTER drivers integrated
by the Processor Expert

The Processor Expert is a rapid development tool integrated with CodeWarrior, which helps us with a
graphical Device Initialization Tool and a set of predefined functions. One of the many offered components
is the FreeMASTER serial driver. We need to simply click a few lines to set up FreeMASTER and UART
to have a completely pre-defined project stationery with FreeMASTER functionality. Run the
CodeWarrior in the same way as in the 2nd section and choose the New Project Wizard, but instead select
Rapid Application Development -> Processor Expert and click finish.
FreeMASTER Usage, Rev. 0

Freescale Semiconductor 21

Is there any easier way to integrate FreeMASTER into my project?
4.2 How to add FreeMASTER serial drivers to the project
The Processor Expert will generate project stationery. Then, go to Component Library -> CPU External
Devices -> Display -> FreeMASTER and double click the FreeMASTER component.

The component will be added to the Component Explorer window.
FreeMASTER Usage, Rev. 0

Freescale Semiconductor22

Is there any easier way to integrate FreeMASTER into my project?
4.3 How to set up the FreeMASTER functionality
Go to the Component inspector and modify the FMSTR1 component. We can enable the Scope and
Recorder functionality.

The short interrupt mode is preset. We can also see the red warning that the inherited UART component
has an incorrect setting, so we have to modify it.
FreeMASTER Usage, Rev. 0

Freescale Semiconductor 23

Is there any easier way to integrate FreeMASTER into my project?
4.4 How to set up the UART parameters
Click on the FMSTR_UART1 component in the Component Explorer and the component settings appear
in the Component Inspector, where all the necessary settings are done.

We will select the UART3 module, enable the clock to the module, and set the baud rate divisor to get a
proper communication speed (9600 bps). The pins used by UART3 must be selected and enabled:
FreeMASTER Usage, Rev. 0

Freescale Semiconductor24

Is there any easier way to integrate FreeMASTER into my project?
4.5 How to modify code in the application
The only thing in the embedded code we have to do is to add the FMSTR_Poll() functional calling to the
code where it will be called periodically. All the rest is resolved in the Processor Expert starting code. We
can modify the ProcessorExpert.c file in the following way:
FreeMASTER Usage, Rev. 0

Freescale Semiconductor 25

Final words
Then, the application is prepared and we can run it and again observe the counter variable in the
FreeMASTER PC application.

5 Final words
There are situations when developing embedded applications where we need to see the application internal
states in real time or where a graphical visualization helps with the debugging. FreeMASTER offers both
of these in a very appropriate way and is easy to use. Adding serial drivers to the application requires only
a few steps, and then we can enjoy the user friendly FreeMASTER application to observe those internal
states.
FreeMASTER Usage, Rev. 0

Freescale Semiconductor26

THIS PAGE IS INTENTIONALLY BLANK
FreeMASTER Usage, Rev. 0

Freescale Semiconductor 27

Document Number: AN4752
Rev. 0

5/2013

How to Reach Us:

Home Page:
freescale.com

Web Support:
freescale.com/support

Information in this document is provided solely to enable system and software

implementers to use Freescale products. There are no express or implied copyright

licenses granted hereunder to design or fabricate any integrated circuits based on the

information in this document.

Freescale reserves the right to make changes without further notice to any products

herein. Freescale makes no warranty, representation, or guarantee regarding the

suitability of its products for any particular purpose, nor does Freescale assume any

liability arising out of the application or use of any product or circuit, and specifically

disclaims any and all liability, including without limitation consequential or incidental

damages. “Typical” parameters that may be provided in Freescale data sheets and/or

specifications can and do vary in different applications, and actual performance may

vary over time. All operating parameters, including “typicals,” must be validated for each

customer application by customer’s technical experts. Freescale does not convey any

license under its patent rights nor the rights of others. Freescale sells products pursuant

to standard terms and conditions of sale, which can be found at the following address:

freescale.com/SalesTermsandConditions.

Freescale, the Freescale logo, AltiVec, CodeWarrior, ColdFire, ColdFire+,Energy

Efficient Solutions logo, PowerQUICC, QorIQ, StarCore, Symphony, and VortiQa are

trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. CoreNet,

Layerscape, QorIQ Qonverge, QUICC Engine, Tower, and Xtrinsic are trademarks of

Freescale Semiconductor, Inc. All other product or service names are the property of

their respective owners.

© 2013 Freescale Semiconductor, Inc.

	1 What are the FreeMASTER serial driver and FreeMASTER PC application?
	1.1 I want it - where do I get the FreeMASTER serial driver?
	1.2 What can I find on the hard drive?
	1.3 What features does the serial driver offer?

	2 How do I create my first application with FreeMASTER in CodeWarrior 10.3?
	2.1 How to create an empty bareboard project stationery using CodeWarrior 10.3
	2.2 How to add the FreeMASTER communication driver files to the project
	2.3 How to configure the FreeMASTER serial driver
	2.4 FreeMASTER API short description
	2.5 What FreeMASTER API functions do I have to handle in my application, and where?

	3 FreeMASTER PC application configuration
	3.1 How to set up the communication channel
	3.2 MAP file selection
	3.3 How to choose the observed variable
	3.4 How to set up the Scope
	3.5 How to set up the Recorder
	3.6 How to configure the Recorder in the FreeMASTER PC application

	4 Is there any easier way to integrate FreeMASTER into my project?
	4.1 How to set up a new project with FreeMASTER drivers integrated by the Processor Expert
	4.2 How to add FreeMASTER serial drivers to the project
	4.3 How to set up the FreeMASTER functionality
	4.4 How to set up the UART parameters
	4.5 How to modify code in the application

	5 Final words

