
November 2012 Doc ID 18459 Rev 4 1/42

UM1053
User manual

Advanced developers guide for STM32F05xx/STM32F100xx/103xx/
STM32F2xx/STM32F4xx MCUs PMSM single/dual FOC library

Introduction
This manual describes the Motor Control Software Development Kit (generically called software
library) designed for and to be used with STM32F05xx/100xx/103xx/STM2F2xx/4xx microcontrollers.
The software library implements the Field Oriented Control (FOC) drive of 3-phase Permanent Magnet
Synchronous Motors (PMSM), both Surface Mounted (SM-PMSM) and Internal (I-PMSM).

The control of an AC induction motor equipped with encoder or tacho generator is described
in the UM0483 user manual.

The STM32F family of 32-bit Flash microcontrollers is based on the breakthrough ARM
Cortex™-M cores: the Cortex™-M0 for STM32F05xx, the Cortex™-M3 for STM32F1xx and
STM32F2xx, and the Cortex™-M4 for STM32F4xx, specifically developed for embedded
applications. These microcontrollers combine high performance with first-class peripherals
that make it suitable for performing both permanent-magnet and AC induction motor FOC.

The PMSM FOC library can be used to quickly evaluate ST microcontrollers and complete ST
application platforms, as well as to save time when developing Motor Control algorithms to be run
on ST microcontrollers. This PMSM FOC library is written in C language, and implements the core
Motor Control algorithms (reference frame transformations, currents regulation, speed regulation,
space-vector modulation, energy efficiency optimizations) as well as sensor reading/decoding
algorithms (three shunts, ST-patented single DC link shunt, isolated current sensors, incremental
encoder, hall sensors) and a sensorless algorithm for rotor position reconstruction.

When deployed with STM32F103xx High-Density / XL-Density devices (Flash memory
density between 256 and 512 Kbytes / 768 Kbytes and 1 Mbyte), STM32F2xx or
STM32F4xx devices, the PMSM FOC library allows simultaneous dual FOC of two different
motors. The library can be customized to suit user application parameters (motor, sensors,
power stage, control stage, pin-out assignment) and provides a ready-to-use Application
Programming Interface (API).

A user project has been implemented to demonstrate how to interact with the Motor Control
API. The project provides an LCD User Interface and a UART User Interface, represents a
convenient real-time fine-tuning and remote control tool for the motor control application.

A PC Graphical User Interface (GUI), the ST MC Workbench, allows a complete and easy
customization of the PMSM FOC library. In conjunction with the ST motor control starter kits,
a PMSM motor can be made to run in a very short time using default parameters.

Basic knowledge of C programming, C++ programming (for customizing the LCD User
Interface), PM motor drives and power inverter hardware is necessary for this programming.
In-depth know-how of STM32F100xx, STM32F103xx, STM32F2xx, STM32F4xx or
STM32F05xx peripherals/functions is only required for customizing existing modules and for
adding new ones for a complete application development.

Table 1 lists the microcontrollers concerned by this user manual.

Table 1. Applicable products

Type Applicable products

Microcontrollers STM32F05xx, STM32F100xx, STM32F103xx, STM32F2xx, STM32F4xx

www.st.com

http://www.st.com

Contents UM1053

2/42 Doc ID 18459 Rev 4

Contents

1 Documentation architecture . 7

1.1 Where to find the information you need . 7

1.2 Related documents . 8

2 Object-oriented programming (OOP) . 9

3 Advantages of object-oriented programming . 11

3.1 Efficient multiple motor control . 11

3.2 Increased safety through data hiding . 11

3.3 Modularity . 11

3.4 Abstraction . 11

4 STM32 PMSM FOC FW library C implementation of OOP 12

4.1 Generic classes source files organization and content 12

4.2 Inheritance implementation . 16

4.3 Derived classes source file organization and content 17

4.4 Motor control library related interrupt handling . 21

5 How to create a user-defined class . 23

6 STM32 PMSM FOC FW library v3.3 class list . 24

6.1 Current reading and PWM generation (CPWMC) and its derived classes 24

6.2 Speed and position feedback (CSPD) and its derived classes 25

6.3 Field-oriented control drive (CFOC) and its derived classes 26

6.4 Bus voltage sensor (CVBS) and its derived classes 27

6.5 Temperature sensor (CTSNS) and its derived classes 27

6.6 Digital Output (CDOUT) class . 28

6.7 Encoder Alignment Controller (CEAC) class . 28

6.8 Rev-up controller (CRUC) class . 28

6.9 Speed and torque controller (CSTC) class . 29

6.10 State machine (STM) class . 29

6.11 PI (CPI) and PID (CPID) controller classes . 30

UM1053 Contents

Doc ID 18459 Rev 4 3/42

7 Class interaction . 31

7.1 Field orientation, speed and torque control procedures 31

7.2 Procedure for motor ramp-up for sensorless algorithms 32

7.3 Rotor alignment for encoder calibration . 33

8 Description of tasks . 35

8.1 Low frequency task . 35

8.2 Medium frequency task . 36

8.3 High frequency task . 36

8.4 Safety task . 38

9 Bibliography . 40

10 Revision history . 41

List of tables UM1053

4/42 Doc ID 18459 Rev 4

List of tables

Table 1. Applicable products . 1
Table 2. Derived classes . 24
Table 3. Speed and position feedback (CSPD) and its derived classes. 26
Table 4. Field Oriented Control drive (CFOC) and its derived classes . 27
Table 5. Bus voltage sensor (CVBS) and its derived classes. 27
Table 6. Bus voltage sensor (CVBS) and its derived classes. 28
Table 7. State machine (STM) class available states . 29
Table 8. Document revision history . 41

UM1053 List of figures

Doc ID 18459 Rev 4 5/42

List of figures

Figure 1. Generic class structure . 16
Figure 2. Derived class object private structure. 17
Figure 3. Motor control interrupt handling . 22
Figure 4. State machine flow diagram . 30
Figure 5. Field orientation, speed and torque regulation . 31
Figure 6. Motor ramp-up procedure . 32
Figure 7. Rotor alignment for encoder calibration . 33
Figure 8. Stator current orientation convention and amplitude temporal variation. 34
Figure 9. Low frequency task flow diagram . 35
Figure 10. The medium frequency task flow diagram . 36
Figure 11. High frequency task flow diagram. 38
Figure 12. Safety task flow diagram. 39

UM1053

6/42 Doc ID 18459 Rev 4

About this document
This document provides important information about the STM32 FOC PMSM FW library
v3.3 with specific focus on its object-oriented programming implementation and its task-
organized structure.

It provides:

● An overview of object-oriented programming, highlighting the advantages of this kind of
approach.

● A description of objects, classes and relationships that have been implemented in C
language in the FW library.

● A brief description for each of the implemented classes and the interaction between
them for certain procedures.

● A description of the motor control tasks.

UM1053 Documentation architecture

Doc ID 18459 Rev 4 7/42

1 Documentation architecture

1.1 Where to find the information you need
Technical information about the MC SDK is organized by topic. The following is a list of the
documents that are available and the subjects they cover:

● User manual UM1052: STM32F05xx/STM32F100xx/STM32F103xx/
STM32F2xx/STM32F4xx PMSM single/dual FOC SDK v3.3 provides the following:

– Features

– Architecture

– Workspace

– Customization processes

– Overview of algorithms implemented (FOC, current sensors, speed sensors)

– MC API

– Demonstrative user project

– Demonstrative LCD user interface

– Demonstrative serial communication protocol

● User manual UM1053: Advanced developers guide for STM32F05xx/STM32F100xx/
103xx/STM32F2xx/STM32F4xx MCUs PMSM single/dual FOC library provides the
following:

– Object-oriented programming style used for developing the MC library

– Description of classes that belong to the MC library

– Interactions between classes

– Description of tasks of the MCA

● MC library source documentation (Doxygen-compiled HTML file). This provides a full
description of the public interface of each class of the MC library (methods, parameters
required for object creation).

● MC Application source documentation (Doxygen-compiled HTML file). This provides a
full description of the classes that make up the MC API.

● User Interface source documentation (Doxygen-compiled HTML file). This provides a
full description of the classes that make up the UI Library.

● STM32F10x, STM32F2x or STM32F4x Standard Peripherals Library source
documentation (Doxygen-compiled HTML file).

● ST MC Workbench GUI documentation. This is a field guide that describes the steps
and parameters required to customize the library, as shown in the GUI.

● In-depth documentation about particular algorithms (sensorless position/speed
detection, flux weakening, MTPA, feed-forward current regulation).

Please contact your nearest ST sales office or support team to obtain the documentation
you are interested in if it was not already included in the software package you received or
available on the ST web site (www.st.com).

Documentation architecture UM1053

8/42 Doc ID 18459 Rev 4

1.2 Related documents

Available from www.arm.com

● Cortex™-M0 Technical Reference Manual, available from:
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0432c/DDI0432C_cortex_m0_r0p
0_trm.pdf

● Cortex™-M3 Technical Reference Manual, available from:
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0337e/DDI0337E_cortex_m3_r1p
1_trm.pdf

● Cortex™-M4 Technical Reference Manual, available from:
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0439c/DDI0439C_cortex_m4_r0p
1_trm.pdf

Available from www.st.com or your STMicroelectronics sales office

● STM32F050x and STM32F051x datasheets

● STM32F100xx datasheet

● STM32F103xx datasheet

● STM32F20x and STM32F21x datasheets

● STM32F40x and STM32F41x datasheets

● STM32F050x and STM32F051x user manual (RM0091)

● STM32F100xx user manual (RM0041)

● STM32F103xx user manual (RM0008)

● STM32F20x and STM32F21x user manual (RM0033)

● STM32F40x and STM32F41x user manual (RM0090)

● STM32F103xx AC induction motor IFOC software library V2.0 (UM0483)

● STM32 and STM8 Flash Loader demonstrator (UM0462)

UM1053 Object-oriented programming (OOP)

Doc ID 18459 Rev 4 9/42

2 Object-oriented programming (OOP)

Object Oriented Programming (OOP) is a programming paradigm whose roots can be
traced to the 1960s. When the software started to become more complex, researchers
studied ways to organize it in units in order to achieve a high level of modularity and code
reusability. As a result, a new way of programming was conceived, which is able to
decompose programs into self-sufficient modules (classes), each instance (object) of which
containing all the information needed to manipulate its own internal data (representing the
object state).

For more information on OOP, refer to the abundant literature on the subject, and to
Section 9: Bibliography. A description of OOP fundamental concepts and features is
provided here.

Object

An object is a bundle of data structure (members) and functions (methods) allowed to
operate on the data structure itself. The data structure contains both object properties and
variables and can also be referenced as the state of the object.

Class

A class can be considered as the factory from which individual objects are created. It is the
user-defined data type that contains variables, properties and methods.

Method

A method is an operation that can access the internal state of an object by reading and/or
writing its variables and properties. It is important to point out that only an object method can
modify its variables; the object internal variables are hidden to object users, who can interact
with them only through the object methods. This fundamental principle of OOP is known as
data encapsulation or data hiding.

Inheritance

Inheritance is the process through which a class inherits the member and the methods of
another class. This type of relationship is called child-parent or derived-base class. Derived
(child) classes are a more specialized version of the base (parent) class as they inherit
attributes and behavior from the base (parent) class but can also introduce their own.

For example, a class speed sensor might have subclasses called encoder, hall and state
observer. Supposing that speed sensor classes define a method called GetElSpeedDpp
that exports the related internal variable, all of its derived classes inherit this method and the
related internal variable, so that the programmer only needs to write it once (and to link to it
once).

In addition to speed sensor class methods, encoder, hall and state observer can have their
own method (IsObserverConverged, for example) and their own implementation of base
class methods through the so-called virtual functions. This way, the user can always call a
base class method, CalcElectricalAngle for example, without knowing the implementation
done in the derived class.

Object-oriented programming (OOP) UM1053

10/42 Doc ID 18459 Rev 4

Interface

Objects define their interaction with the outside world through the methods that they expose.
The list of methods exported to the application level that operate on that object (class)
constitute the only interface of that object (class).

UM1053 Advantages of object-oriented programming

Doc ID 18459 Rev 4 11/42

3 Advantages of object-oriented programming

This section describes the fundamental concepts and features of OOP, and the benefits of
this type of approach with particular reference to STM32 FOC PMSM SDK v3.3.

3.1 Efficient multiple motor control
OOP makes it possible to create multiple instances of objects (for example, two object
encoders) without duplicating the footprint of the Flash memory necessary to handle them.
This efficiency of OOP, in terms of code size, is even more marked when exploiting
inheritance. Taking the example discussed in the previous section as a reference, the
GetElSpeedDpp method is linked in the executable only once, no matter how many
instances have been created of the derived classes encoder, hall or state observer.

3.2 Increased safety through data hiding
Object variables are bound to the object and only accessible through the object methods.
This prevents the object variables from being accidentally modified, improving robustness
for the final applications (fuel pumps, electric traction or applications related to human
safety, for example).

3.3 Modularity
The source code for a class implementation can be written and maintained separately from
other classes. This means that new versions of classes may be released separately from the
others on the condition that the class interface and the method behavior are not modified.

3.4 Abstraction
You only need to know the object interface so you can focus on specific software
developments.

STM32 PMSM FOC FW library C implementation of OOP UM1053

12/42 Doc ID 18459 Rev 4

4 STM32 PMSM FOC FW library C implementation of
OOP

As a result of its desirable characteristics (code portability and efficiency, ability to access
specific hardware addresses, low runtime demand on system resources, for example), the C
language is widely used in embedded system applications. On the other hand, the C
language, unlike more complex languages such as C++ and Java, does not support object-
oriented programming. For this reason, a dedicated implementation of OOP has been
developed in C for the STM32 PMSM FOC FW library v3.3.

4.1 Generic classes source files organization and content
Depending on the proposed implementation, an Example class is generally composed of
three source files:

ExampleClass.h

Located in the \MC library interface folder, this is the public header file that contains the
interface of the Example class. As mentioned previously, the interface of a class exports the
definitions of the methods applicable to the objects of that class. In general, in the STM32
PMSM FOC FW library implementation, this file contains everything necessary to work with
that class. For this purpose, this file contains the public definition of the class type (CEXMP)
and the type structure containing the constant parameters required for the object creation
(ExampleParams_t).

In addition, and only if necessary, definitions of certain types required for using methods are
stored in this file.

/**
 * @file ExampleClass.h
 * @author IMS Systems Lab and Technical Marketing - MC Team
 * @version V0.0.1
 * @brief This file contains interface of Example class

*/

/* Includes ---*/
#include "MC_type.h"

/**
 * @brief Public Example class definition
 */
typedef struct CEXMP_t *CEXMP;

/**
 * @brief Example class parameters definition
 */
typedef const struct
{
 unsigned int paramA; /*!< Example of parameter */
}ExampleParams_t, *pExampleParams_t;

UM1053 STM32 PMSM FOC FW library C implementation of OOP

Doc ID 18459 Rev 4 13/42

/**
 * @brief Creates an object of the class Example
 * @param pExampleParams pointer to an Example parameters
structure
 * @retval CEXMP new instance of Example object
 */
CEXMP EXMP_NewObject(pExampleParams_t pExampleParams);

/**
 * @brief Example of public method of the class Example
 * @param this related object of class CEXMP
 * @retval none
 */
void EXMP_Func(CEXMP this);

/**
 * @brief Example of virtual method of the class Example
implemented by derived class
 * @param this related object of class CEXMP
 * @retval none
 */
void EXMP_VFunc(CEXMP this);

It is worth noticing that CEXMP class type is a pointer to a void structure (whose type is
CEXMP _t). This prevents the user of the class from accessing object members and hidden
data.

ExamplePrivate.h

Located in \MC library\inc (available only for confidential distribution of STM32 FOC PMSM
SDK v3.3), this is a class private header file that contains private definitions required by the
class implementation. It contains definitions of object data structure type (object variable
elements of this structure), virtual methods container structure (only for classes with
derived, see next paragraph), parameters class private re-definition and the private class
definition.

/**

* @file ExamplePrivate.h
* @author IMS Systems Lab and Technical Marketing - MC Team
* @version V0.0.1
* @brief This file contains private definition of Example class

*/

/**
 * @brief Example class members definition
 */
typedef struct
{

unsigned int base_vars; /*!< Example of member */
}Vars_t,*pVars_t;

STM32 PMSM FOC FW library C implementation of OOP UM1053

14/42 Doc ID 18459 Rev 4

/**
 * @brief Redefinition of parameter structure
 */
typedef ExampleParams_t Params_t, *pParams_t;

/**
 * @brief Virtual methods container
 */
typedef struct
{
void (*pIRQ_Handler)(void *this, unsigned char flag); /*!< Only if
class implementation requires to be
triggered by an interrupt */

void (*pVFunc)(CEXMP this); /*!< Example of virtual function
pointer */ }Methods_t,*pMethods_t;

/**
 * @brief Private Example class definition
 */
typedef struct
{

Methods_t Methods_str ;/*!< Virtual methods container */
Vars_t Vars_str; /*!< Class members container */
pParams_t pParams_str; /*!< Class parameters container */
void *DerivedClass;/*!< Pointer to derived class */

}_CEXMP_t, *_CEXMP;

If either the base or derived class implementation requires the execution of program lines to
be triggered by an interrupt, a pointer to those program lines (pIRQ_Handler) is also
defined. See Section 4.4: Motor control library related interrupt handling for more
information about MC library IRQ handler management.

ExampleClass.c

Located in \MC library\src (available only for confidential distribution of STM32 FOC PMSM
SDK v3.3), this is the source file that contains the implementation of class methods. This file
includes both the interface and the private definitions of the same class.

The Example_NewObject method merits some explanation. This method creates objects of
Example class (CEXMP) on demand.

Two different implementations of Example_NewObject are proposed, depending on the
availability of the MC_CLASS_DYNAMIC in MCLibraryConf.h definition. If
MC_CLASS_DYNAMIC is defined, the dynamic RAM allocation is enabled and objects are
created through calloc standard library subroutine, resulting in an efficient exploitation of the
RAM memory. This approach is not compatible with MISRA C 2004 rules compliancy
because of the potential risks of memory leaks and memory corruption introduced by the
dynamic memory allocation.

On the contrary, the dynamic memory allocation is disabled when the user comments the
MC_CLASS_DYNAMIC definition. In this case, an array of objects is statically and
previously allocated in the RAM. The list of objects that are reserved for each of the classes
is defined in MCLibraryConf.h for both single motor and dual motor (MAX_EXMP_NUM and
similar). In order to prevent the compiler from reserving RAM memory for objects that will
never be created, you can edit pool dimension accordingly to the final application.

UM1053 STM32 PMSM FOC FW library C implementation of OOP

Doc ID 18459 Rev 4 15/42

Pool dimension tailoring is only permitted in STM32 FOC PMSM SDK v3.3 confidential
distribution. In case of a web distribution, no additional objects can be instanced by the user.
Only the following exceptions are allowed: up to 3 PID objects, up to 5 PI objects, up to 5
digital output objects.

/**

 * @file ExampleClass.c
 * @author IMS Systems Lab and Technical Marketing - MC Team
 * @version V0.0.1
 * @brief This file contains interface of Example class

*/

#include "ExampleClass.h"
#include "ExamplePrivate.h"
#include "MCLibraryConf.h"
#include "MC_type.h"

#ifdef MC_CLASS_DYNAMIC
 #include "stdlib.h" /* Used for dynamic allocation */
#else
 _CEXMP_t EXMPpool[MAX_EXMP_NUM];
 unsigned char EXMP_Allocated = 0u;
#endif

/**
 * @brief Creates an object of the class Example
 * @param pExampleParams pointer to an Example parameters
structure
 * @retval CEXMP new instance of Example object
 */
CEXMP EXMP_NewObject(pExampleParams_t pExampleParams)
{
 _CEXMP _oEXMP;

 #ifdef MC_CLASS_DYNAMIC
 _oEXMP = (_CEXMP)calloc(1u,sizeof(_CEXMP_t));
 #else
 if (EXMP_Allocated < MAX_EXMP_NUM)
 {
 _oEXMP = &EXMPpool[EXMP_Allocated++];
 }
 else
 {
 _oEXMP = MC_NULL;
 }
 #endif
 _oEXMP->pParams_str = (pParams_t)pExampleParams;
 return ((CEXMP)_oEXMP);
}

/**

STM32 PMSM FOC FW library C implementation of OOP UM1053

16/42 Doc ID 18459 Rev 4

 * @brief Example of public method of the class Example
 * @param this related object of class CEXMP
 * @retval none
 */
void EXMP_Func(CEXMP this)
{
 ((_CEXMP)this)->Vars_str.base_vars = 0u;
}

/**
* @brief Example of virtual method of the class Example implemented
by derived * class
 * @param this related object of class CEXMP
 * @retval none
 */
void EXMP_VFunc(CEXMP this)
{
 ((_CEXMP)this)->Methods_str.pVFunc(this);
}

4.2 Inheritance implementation
As discussed previously, inheritance is one of the fundamental features of object-oriented
programming. This section describes how it has been achieved in the STM32 PMSM FOC
SDK v3.3.

Figure 1 summarizes the private content of a generic class in the proposed implementation.

Figure 1. Generic class structure

Not used in classes with no derived class objects, virtual methods structure and pointers to
derived classes are keys to understanding inheritance accomplishment. Virtual methods
structure contains a list of pointers to those functions that - once properly initialized in the
derived class object creation process - link virtual methods exported by base class interface,
together with their private implementation contained in each of the derived classes.

UM1053 STM32 PMSM FOC FW library C implementation of OOP

Doc ID 18459 Rev 4 17/42

The pointer to a derived class object allows composing a derived class object by merging
both its base and derived class portions as shown in Figure 2.

Figure 2. Derived class object private structure

The derived class portion of a derived class object is always accessed through its base
class portion, which represents the public entry point for both base and derived class
specific members.

4.3 Derived classes source file organization and content
In order to complete the picture of derived class source files, templates are shown here for
the Derived class, derived from the base class Example.

Derived_ExampleClass.h

Located in \MC library interface, this is the public header file that contains the interface of
the Derived_Example class. As for ExampleClass.h, this header file contains everything
necessary to work with the related class. This file contains methods specific of the derived
class, the public definition of the derived class type and the type structure that contains the
constant parameters required to create the derived class object.

In addition and only if necessary, this file contains definitions of certain types required for
using methods.

Creating a new instance of a derived class object requires pointers to both base and derived
classes parameter structures (see also Derived_ExampleClass.c).
/**

 * @file Derived_ExampleClass.h
 * @author IMS Systems Lab and Technical Marketing - MC Team
 * @version V0.0.1
 * @brief This file contains interface of Derived class

*/
#include "MC_type.h"

/**

STM32 PMSM FOC FW library C implementation of OOP UM1053

18/42 Doc ID 18459 Rev 4

 * @brief Public Derived class definition
 */
typedef struct CDRV_EXMP_t *CDRV_EXMP;

/**
 * @brief Derived class parameters definition
 */
typedef const struct
{

unsigned int param1; /*!< Example of parameter */
}DerivedParams_t, *pDerivedParams_t;

/**
 * @brief Creates an object of the class Derived
 * @param pExampleParams pointer to an Example parameters
structure
 * @param pDerivedParams pointer to a Derived parameters structure
 * @retval CDRV_EXMP new instance of Derived object
 */
CDRV_EXMP DRV_NewObject(pExampleParams_t pExampleParams,
pDerivedParams_t pDerivedParams);
/**
 * @brief Example of public method of the class Derived
 * @param this related object of class CDRV_EXMP
 * @retval none
 */
void DRV_Func(CDRV_EXMP this);

Derived_ExamplePrivate.h

Located in \MC library\inc (available only for confidential distribution of STM32 FOC PMSM
SDK v3.3), this is a class private header file that contains private definitions required for the
derived class implementation. It contains the private definition of an object data structure
type (object variables are elements of this structure), parameter class private redefinition
and the private class definition.

Unlike the related base class private definition header file, a derived class structure type
does not contain pointers to both further derived classes and virtual method containers. This
limits the levels of inheritance to one.

/** ***
 * @file Derived_ExamplePrivate.h
 * @author IMS Systems Lab and Technical Marketing - MC Team
 * @version V0.0.1
 * @brief This file contains private definition of Derived class

*/

/* Define to prevent recursive inclusion ------------------------*/
#ifndef __DERIVED_EXAMPLEPRIVATE_H
#define __DERIVED_EXAMPLEPRIVATE_H

/**
 * @brief Derived class members definition

UM1053 STM32 PMSM FOC FW library C implementation of OOP

Doc ID 18459 Rev 4 19/42

 */
typedef struct
{
 unsigned int derived_Vars; /*!< Example of member */
}DVars_t,*pDVars_t;

/**
 * @brief Redefinition of parameter structure
 */
typedef DerivedParams_t DParams_t, *pDParams_t;

/**
 * @brief Private Derived class definition
 */
typedef struct
{

DVars_t DVars_str;/*!< Derived class members container */
pDParams_t pDParams_str;/*!< Derived class parameters container

*/
}_DCDRV_EXMP_t, *_DCDRV_EXMP;

Derived_ExampleClass.c

Located in \MC library\src (available only for confidential distribution of STM32 FOC PMSM
SDK v3.3), this is the source file that contains the implementation of both derived class
specific methods and base class virtual methods. It includes both base and derived classes
interface and private definitions. If the derived class requires the execution of program lines
to be triggered by an interrupt, the MCIRQHandlerPrivate.h file is also included (refer to
Section 4.4: Motor control library related interrupt handling for further information about
interrupt handling).

The DRV_NewObject method merits mentioning. This method creates objects of the
Derived_Example class (CDRV_EXMP) on demand and requires the pointers to both
parameters structure of base and derived classes as input. The creation of a derived class
object encloses the creation of the related base class object. The two objects are then
merged by initializing the base class pointer to the derived class object (_oExample-
>DerivedClass) with the address of the newly created derived class object (_oDerived). The
base class pointers to the virtual methods and—if any—to the MC IRQ Handler are also
initialized with pointers to derived class private functions. The address of the base class
portion of the derived class object is cast to the public derived class type (CDRV_EXMP)
and returned.

/** ***
 * @file Derived_ExampleClass.c
 * @author IMS Systems Lab and Technical Marketing - MC Team
 * @version V0.0.1
 * @brief This file contains private implementation of Derived
class

*/

#include "ExampleClass.h"
#include "ExamplePrivate.h"
#include "Derived_ExampleClass.h"

STM32 PMSM FOC FW library C implementation of OOP UM1053

20/42 Doc ID 18459 Rev 4

#include "Derived_ExamplePrivate.h"
#include "MCLibraryConf.h"
#include "MC_type.h"
#include "MCIRQHandlerPrivate.h" /*!< Only if derived class
implementation requires to be triggered by an interrupt */
#ifdef MC_CLASS_DYNAMIC

#include "stdlib.h" /* Used for dynamic allocation */
#else

_DCDRV_EXMP_t DRV_EXMPpool[MAX_DRV_EXMP_NUM];
unsigned char DRV_EXMP_Allocated = 0u;

#endif

static void DRV_VFunc(CEXMP this);

/**
 * @brief Creates an object of the class Derived
 * @param pExampleParams pointer to an Example parameters
structure
 * @param pDerivedParams pointer to an Derived parameters
structure
 * @retval CDRV_EXMP new instance of Derived object
 */
CDRV_EXMP DRV_NewObject(pExampleParams_t pExampleParams,
pDerivedParams_t pDerivedParams)
{

_CEXMP _oExample;
_DCDRV_EXMP _oDerived;

_oExample = (_CEXMP)EXMP_NewObject(pExampleParams);

#ifdef MC_CLASS_DYNAMIC
_oDerived = (_DCDRV_EXMP)calloc(1u,sizeof(_DCDRV_EXMP_t));

#else
if (DRV_EXMP_Allocated < MAX_DRV_EXMP_NUM)
{

_oDerived = &DRV_EXMPpool[DRV_EXMP_Allocated++];
}
else
{

_oDerived = MC_NULL;
}

#endif
_oDerived->pDParams_str = pDerivedParams;
_oExample->DerivedClass = (void*)_oDerived;
_oExample->Methods_str.pVFunc = &DRV_VFunc;
_oExample->Methods_str.pIRQ_Handler = &DRV_IRQHandler;
Set_IRQ_Handler(pDerivedParams->IRQno, (_CMCIRQ)_oExample);
return ((CDRV_EXMP)_oExample);

}
/**
 * @brief Example of private method of the class Derived to
implement a virtual

UM1053 STM32 PMSM FOC FW library C implementation of OOP

Doc ID 18459 Rev 4 21/42

 * function of class Example
 * @param this related object of class CEXMP
 * @retval none
 */
static void DRV_VFunc(CEXMP this)
{

((_DCDRV_EXMP)(((_CEXMP)this)->DerivedClass))-
>DVars_str.derived_Vars = 0u;
}
/**
 * @brief Example of public method of the class Derived
 * @param this related object of class CDRV_EXMP
 * @retval none
 */
void DRV_Func(CDRV_EXMP this)
{

((_DCDRV_EXMP)(((_CEXMP)this)->DerivedClass))-
>DVars_str.derived_Vars = 0u;
}
/**
 * @brief Example of private method of the class Derived to
implement an MC IRQ function
 * @param this related object
 * @param flag used to distinguish between various IRQ sources
 * @retval none
 */
static void DRV_IRQHandler(void *this, unsigned char flag)
{
 if (flag==1u)
 {
 ((_DCDRV_EXMP)(((_CEXMP)this)->DerivedClass))-
>DVars_str.derived_Vars++;
 }
}

4.4 Motor control library related interrupt handling
The implementation of certain classes (such as speed or current sensors) may require the
execution of specific program lines (referenced below as MC IRQ Handler) when a specific
event occurs, exploiting the related Interrupt Service Routine (ISR).

The same ISR must also be available at the User project level (see also UM1052) to permit
the customization of an application software by adding personal code lines in the same ISR.

In order to keep the motor control library and the user project layers separate, it is
necessary to implement a mechanism that enables triggering the execution of MC IRQ
Handlers bundled within a given class without permitting any explicit reference to the motor
control library objects from the user layer.

With this mechanism, the stm32fxxx_MC_it.c module (containing the definitions of all the
IRQ Handlers that require certain MC code lines to be executed) is put at the disposal of the
user by including it at the user project level. Both the stm32fxxx_MC_it.c and the motor
control libraries include a module, MCIRQHandlerClass, which privately holds a motor

STM32 PMSM FOC FW library C implementation of OOP UM1053

22/42 Doc ID 18459 Rev 4

control vector table (MC_IRQTable) that contains the set of objects that need to be triggered
by an ISR. The filling of a given position in the table is performed when the corresponding
object is created (inside the related XXX_New_Object method) by means of the
Set_IRQ_Handler function call. Figure 3 illustrates this process.

Figure 3. Motor control interrupt handling

When an interrupt event occurs, the related ISR (Peripheral_X_IRQHandler) is accessed.
After clearing the proper interrupt flag and optionally executing user defined code lines, the
Exec_IRQ_Handler function is called if it is required to execute an MC IRQ Handler.

In order to identify the MC IRQ Handler to be executed, the MC_IRQTable position that
corresponds to the proper object is passed as a function parameter (so stm32fxxx_MC_it.c
does not require object interface knowledge). Furthermore, as an MC IRQ Handler can be
generally accessed from more than one interrupt, a flag that identifies the triggering event is
also passed.

Once the object owner of the MC IRQ Handler to be executed has been identified by
accessing the MC IRQ Table in the position passed to Exec_IRQ_Handler, this function can
finally jump to the MC IRQ Handler itself.

The entire process, considering the program flow from the Peripheral_X_IRQHandler to the
MC IRQ Handler, only requires two jumps: to Exec_IRQ_Handler and then to the MC IRQ
Handler. In this way, the overhead introduced by the SW architecture is minimized. This is
achieved by making the addresses of both the object and its related MC IRQ Handler (which
is located in the first element of the class structure, as already shown in ExamplePrivate.h
template) the same.

UM1053 How to create a user-defined class

Doc ID 18459 Rev 4 23/42

5 How to create a user-defined class

Users can create their own classes and add them to the motor control library. To do this, use
the templates described in Section 4.1 for base classes and Section 4.3 for derived classes.

If the newly created class requires the execution of an MC IRQ Handler on an interrupt
occurrence, the MAX_MC_IRQ_NUM definition in MCIRQHandlerClass.c must be
incremented and the corresponding MC IRQ table position defined, by adding the following
line in MCIRQHandlerClass.h, for example:

 #define MC_IRQ_USER_IRQ 4u

Note: The first four table positions are reserved for PWMnCurrFdbk (first and second instances)
and SpeednPosFdbk (first and second instance) objects. In case of STM32 FOC PMSM
SDK v3.3 web distribution, the maximum number of elements for the MC IRQ table is limited
to 8 (elements 0 to 3 are already reserved and not available for the user, elements 4 to 7 are
left for the user).

Add the Exec_IRQ_Handler(MC_IRQ_USER_IRQ, flag) function call in stm32fxxx_MC_it.c
in the proper peripheral IRQ handler. The flag is the identifier for the interrupt trigger event.

STM32 PMSM FOC FW library v3.3 class list UM1053

24/42 Doc ID 18459 Rev 4

6 STM32 PMSM FOC FW library v3.3 class list

This section provides a general view and a short description of the classes used in the MC
library. For a detailed description of the methods and parameters of each class, see STM32
FOC PMSM FW library v3_3 developer Help file.chm.

Note: Source files of the MC library classes are only provided free of charge within STM32 FOC
PMSM SDK v3.3 confidential distribution. Contact your nearest ST sales office or support
team for further information.

6.1 Current reading and PWM generation (CPWMC) and its
derived classes
This class implements both the functionality of the current reading sensor and PWM
generator. Any object of this class must be linked to a derived class object.

In order to increase the modularity of the library, the access to the MCU peripherals has
been moved to the derived classes, which have been additionally differentiated by the
hardware current sensing topology. The derived classes are:

Table 2. Derived classes

Class Definition

R1_VL1
(CR1VL1_PWMC)

Current sensing carried out via a single shunt resistor placed on the DC
bus link and implemented on an STM32F100x MCU (value line devices). It
only supports a single motor drive.

R1_LM1
(CR1LM1_PWMC)

Current sensing carried out via a single shunt resistor and implemented on
an STM32F103x MCU; where, x= 4, 6, 8, B (performance line, low and
medium density devices). It only supports a single motor drive.

R1_HD2
(CR1HD2_PWMC)

Current sensing carried out via a single shunt resistor and implemented on
an STM32F103x MCU; where, x= C, D, E (performance line, high density
devices). Although it is designed to support dual motor drive, it can also be
used when a single motor drive has been instanced.

R3_LM1
(CR3LM1_PWMC)

Current sensing carried out via three shunt resistors placed below low side
switches on the three inverter legs and implemented on an STM32F103x
MCU; where, x= 4, 6, 8, B (performance line, low and medium density
devices). It only supports a single motor drive.

R3_HD2
(CR3HD2_PWMC)

Current sensing carried out via three shunt resistors placed below low side
switches on the three inverter legs and implemented on an STM32F103x
MCU; where, x= C, D, E (performance line, high density devices). Although
it is designed to support dual motor drive, it can also be used when a
single motor drive has been instanced.

ICS_LM1
(CILM1_PWMC)

Current sensing carried out through isolated current sensors and
implemented on an STM32F103x MCU; where, x= 4, 6, 8, B (performance
line, low and medium density devices). It only supports a single motor
drive.

UM1053 STM32 PMSM FOC FW library v3.3 class list

Doc ID 18459 Rev 4 25/42

6.2 Speed and position feedback (CSPD) and its derived classes
This class carries out the speed/position sensor handling for both physical or FW emulated
sensors. Any object of this class must be linked to a derived class object.

Access to hardware peripherals, if there is any, is asked to derived classes which are
differentiated according to type of speed/position sensor. In the STM32 PMSM FOC FW
library v3.3, hall sensors, quadrature encoder and sensorless are supported:

ICS_HD2
(CIHD2_PWMC)

Current sensing carried out through isolated current sensors and
implemented on an STM32F103x MCU; where, x= C, D, E (performance
line, high density devices). Although it has been specifically designed to
support dual motor drive, it can also be used when a single motor drive has
been instanced.

R1_F2XX
(CR1F2XX_PWMC)

Current sensing carried out via a single shunt resistor placed on the DC
bus link and implemented on an STM32F2xx MCU. Although it is designed
to support dual motor drive, it can also be used when a single motor drive
has been instanced.

R3_F2XX
(CR3F2XX_PWMC)

Current sensing carried out via three shunt resistors placed below low side
switches on the three inverter legs and implemented on an STM32F2xx
MCU. Although it is designed to support dual motor drive, it can also be
used when a single motor drive has been instanced.

ICS_F2XX
(CIF2XX_PWMC)

Current sensing carried out through isolated current sensors and
implemented on an STM32F2xx MCU. Although it is designed to support
dual motor drive, it can also be used when a single motor drive has been
instanced.

R1_F4XX
(CR1F4XX_PWMC)

Current sensing carried out via a single shunt resistor placed on the DC
bus link and implemented on an STM32F40x or STM32F41x MCU.
Although it is designed to support dual motor drive, it can also be used
when a single motor drive has been instanced.

R3_F4XX
(CR3F4XX_PWMC)

Current sensing carried out via three shunt resistors placed below low side
switches on the three inverter legs and implemented on an STM32F40x or
STM32F41x MCU. Although it is designed to support dual motor drive, it
can also be used when a single motor drive has been instanced.

ICS_F4XX
(CIF4XX_PWMC)

Current sensing carried out through isolated current sensors and
implemented on an STM32F40x or STM32F41x MCU. Although it is
designed to support dual motor drive, it can also be used when a single
motor drive has been instanced.

R1_F0XX
(CR1F0XX_PWMC)

Current sensing carried out via a single shunt resistor placed on the DC
bus link and implemented on an STM32F0xx. It only supports a single
motor drive.

Table 2. Derived classes (continued)

Class Definition

STM32 PMSM FOC FW library v3.3 class list UM1053

26/42 Doc ID 18459 Rev 4

6.3 Field-oriented control drive (CFOC) and its derived classes
This class implements Field -Oriented Control (FOC) and additional methods that may be
required, by internal permanent magnet motors for example. Any object of this class must
be linked to a derived class object.

The key methods for this class are:

● FOC_CurrController, which carries out the current regulation (field orientation) and
must be called at PWM frequency (or an integer sub-multiple),

● FOC_CalcCurrRef, which updates the reference stator current components Iqref and
Idref with the derived class implementation and required electrical torque.

This class does not contain references to peripherals and is thus hardware-independent.

Derived classes are differentiated according to required additional methods:

Table 3. Speed and position feedback (CSPD) and its derived classes

Class Definition

ENCODER (CENC_SPD)

This derived class supports quadrature encoder and can be used
with any STM32F05x, STM32F100x, STM32F103x, STM32F2x,
STM32F40x or STM32F41x MCU. By default, index signal is not
handled.

HALL (CHALL_SPD)
This derived class supports three hall sensors. It can be used with
any STM32F05x, STM32F100x, STM32F103x, STM32F2x,
STM32F40x or STM32F41x MCU.

STO (CSTO_SPD)

This derived class implements sensorless rotor position
reconstruction based on current feedbacks, bus voltage and
applied motor phase voltages information. The sensorless
algorithm consists of a Luenberger state observer and a PLL.

STO_CORDIC (CSTOC_SPD)

This derived class implements sensorless rotor position
reconstruction based on current feedbacks, bus voltage and
applied motor phase voltages information. The sensorless
algorithm consists of a Luenberger state observer and an iterative
algorithm for trigonometric arctg function computation.

Virtual speed sensor
(CVSS_SPD)

This derived class is mainly used during ramp-up if an object of one
of the sensorless speed/position classes (CSTO_SPD or
CSTOC_SPD) is used as a main speed sensor. Used in
conjunction with a rev-up controller and a speed and torque
controller, it allows customizing ramp-up. An object of this class
emulates a real sensor during motor rev up by returning (on
demand) a virtual angle and/or a virtual speed in accordance with
the time base and the acceleration (set by derived class specific
method VSPD_SetMecAcceleration).

UM1053 STM32 PMSM FOC FW library v3.3 class list

Doc ID 18459 Rev 4 27/42

6.4 Bus voltage sensor (CVBS) and its derived classes
This class implements either a virtual or a real bus voltage, depending on the sensor
availability. Any object of this class must be linked to a derived class object.

If any, the access to MCU peripherals is delegated to the derived classes so that the base
class implementation is kept hardware-independent. Derived classes are differentiated
according to the type of physical sensor (if any):

6.5 Temperature sensor (CTSNS) and its derived classes
This class implements either a virtual or real temperature sensor, depending on the sensor
availability. Any object of this class must be linked to a derived class object.

If any, the access to MCU peripherals is delegated to the derived classes so that the base
class implementation is kept hardware-independent. Derived classes are differentiated
according to the type of physical sensor (if any):

Table 4. Field Oriented Control drive (CFOC) and its derived classes

Class Description

SM (CSM_FOC)
Derived class designed for driving surface-mounted motors. No additional
methods have been implemented here.

SMF (CSMF_FOC)
Derived classes used for surface magnet motors (SM-PMSM) when flux
weakening is required.

IMF (CIMF_FOC)
Derived classes used for internal permanent magnet motors (I-PMSM).
Maximum-Torque-Per-Ampere (MTPA) and flux weakening additional
methods are available for this class.

IMFF (CIMFF_FOC)

Derived classes used for internal permanent magnet motors (I-PMSM)
high-end drives. Maximum-Torque-Per-Ampere (MTPA), flux weakening
additional methods and auxiliary feed-forward current regulator are
available for this class.

Table 5. Bus voltage sensor (CVBS) and its derived classes

Class Description

Rdivider (CRVBS_VBS)
Derived class which can handle all types of real voltage sensor with
analog output. For example, hardware resistive voltage partitioning.

Virtual (CVVBS_VBS)
Derived class which emulates a voltage sensor when no real sensors are
available. It always returns a constant programmable voltage.

STM32 PMSM FOC FW library v3.3 class list UM1053

28/42 Doc ID 18459 Rev 4

6.6 Digital Output (CDOUT) class
This class is used to abstract the concept of digital output driving from its hardware-
dependent implementation. With particular reference to motor control, this class can be
used to drive in-rush current limiter devices or handle resistive brake turn-on and turn-off, for
example.

6.7 Encoder Alignment Controller (CEAC) class
This class is only used if a quadrature encoder is used as a main or auxiliary sensor. In
conjunction with a virtual speed sensor, a speed and torque controller and FOC drive
objects, this class handles the initial encoder calibration (which comprises a rotor alignment
in a given position) necessary to make the information coming from a quadrature encoder
absolute. See Section 6.3 for more information about the alignment procedure.

In case of a dynamic allocation, the object may be destroyed after the alignment has been
executed, and created only when necessary.

6.8 Rev-up controller (CRUC) class
This class is only used if an object of one of the sensorless classes is used as a main
speed/position sensor. Used in conjunction with a speed and torque controller and a virtual
speed sensor, this class enables a complete customization of the motor phase current
waveforms during motor ramp-up.

In the present implementation, the rev-up is divided into smaller portions called phases,
where both speed and current amplitude can vary linearly. Each phase is characterized by
its parameters (structure type RUCPhasesParams_t):

● duration (hDurationms)

● final motor speed (hFinalMecSpeed01Hz)

● final current amplitude (hFinalTorque)

● pointer to the next rev-up phase parameters structure.

The Initial angle for the first phase can also be specified. See also Section 6.2 for more
information about ramp-up.

Table 6. Bus voltage sensor (CVBS) and its derived classes

Class Description

NTC (CNTC_TSNS)

Derived class which can handle NTC sensor or more in general analog
temperature sensors whose output is related to the temperature by the
following formula:

Virtual (CVTS_TSNS)
Derived class which emulates a temperature sensor when no real sensors
are actually available. It always returns a constant programmable
temperature.

Vout V0
dV
dT
------- T T0–()•+=

UM1053 STM32 PMSM FOC FW library v3.3 class list

Doc ID 18459 Rev 4 29/42

6.9 Speed and torque controller (CSTC) class
The speed and toque controller provides a FOC object with a target electrical torque
depending on the control mode (speed or torque control) and executes target speed and
torque ramps.

When in speed mode, the speed and toque controller computes the new target speed
reference, if a ramp is being executed, and then performs the speed regulation loop. The
return is an electrical torque, which is then used by the FOC object to get Iqref and Idref.

When the speed and toque controller is in torque mode, it computes the new target
electrical torque, if a ramp is being executed, and then returns a target electrical torque.

6.10 State machine (STM) class
The state machine class handles transitions between the states of the drive that influence
the actions that need to be taken by motor control tasks.

The following list of available states and a summarizing block diagram are provided for
convenience.

Table 7. State machine (STM) class available states

State Description

IDLE

Persistent state. The following state can be:

– IDLE_START, if a start motor command has been given

– IDLE_ALIGNMENT, if a start alignment command has been given

IDLE_ALIGNMENT

Pass-through state. The code to be executed only once between IDLE and
ALIGNMENT states is executed here. The following state is usually
ALIGNMENT but it can also be ANY_STOP if a stop motor command has
been given.

ALIGNMENT Persistent state. The following state is ANY_STOP.

IDLE_START
Pass-through state. The code to be executed only once between IDLE and
START states is executed here. The following state is usually START but it
can also be ANY_STOP if a stop motor command has been given.

START

Persistent state where the motor start-up is intended to be executed. The
following state is usually START_RUN as soon as the first validated speed
has been detected. ANY_STOP is also possible if a stop motor command
has been executed.

START_RUN
Pass-through state. The code to be executed only once between START
and RUN states is executed here. The following state is usually RUN, but it
can also be ANY_STOP if a stop motor command has been given.

RUN
Persistent state with running motor. The following state is usually
ANY_STOP when a stop motor command has been executed.

ANY_STOP
Pass-through state. The code to be executed only once between any state
and STOP is executed here. The following state is usually STOP.

STOP
Persistent state. The following state is usually STOP_IDLE as soon as the
conditions required by the application are detected.

STOP_IDLE
Pass-through state. The code to be executed only once between STOP
and IDLE is executed here. The following state is usually IDLE.

STM32 PMSM FOC FW library v3.3 class list UM1053

30/42 Doc ID 18459 Rev 4

Figure 4. State machine flow diagram

6.11 PI (CPI) and PID (CPID) controller classes
PI and PID controller classes realize PI and PID regulators respectively. The PID class is
seen as a derived class from PI by adding the particular functionality of the derivative terms.

FAULT_NOW
Persistent state. The state can be moved from any condition directly to this
state by the STM_FaultProcessing method. As soon as all the fault
conditions have disappeared, the state is moved into FAULT_OVER.

FAULT_OVER
Persistent state where the application is intended to stay after all the fault
conditions have disappeared. The following state is usually STOP_IDLE.
The state is moved as soon as the user has acknowledged the fault event.

Table 7. State machine (STM) class available states (continued)

State Description

UM1053 Class interaction

Doc ID 18459 Rev 4 31/42

7 Class interaction

This section facilitates the understanding of the interactions between classes by describing
how objects relate to achieve field orientation, speed and torque regulation, motor ramp-up
and alignment.

7.1 Field orientation, speed and torque control procedures

Figure 5. Field orientation, speed and torque regulation

Figure 5 shows how the FOC drive class interacts with other classes in order to achieve
both the speed and torque regulation and the field orientation. When the FOC drive object
(oFOC) is initialized, the set of objects necessary to accomplish its duties are passed and
stored in oFOC.

When the drive input is set to external (bDriveInput = EXTERNAL), stator current references
can be provided from the outside via the FOC_SetCurrRef method. When the drive input is
set to internal (bDriveInput = INTERNAL), the stator current reference components (Iqdref)
are computed internally by the FOC_CalcCurrRef method (at the rate specified by medium
frequency (MF) clock, which is 500Hz by default). This internal computation is performed in
two steps:

1. The reference torque (Teref) is computed by the STC class method,
STC_CalcTorqueReference (running speed PI regulator when in speed mode, for
example)

2. From Teref, Iqref and Idref are computed by the FOC drive derived class method,
CalcCurrRef, which implements MTPA and/or flux weakening if they are available.

Class interaction UM1053

32/42 Doc ID 18459 Rev 4

Field orientation is executed at the rate specified by the High Frequency (HF) clock (equal to
PWM frequency by default) using the FOC_CurrRegulator method. This method interacts
with different objects (oPIq. oPId, oPWMC, oSPD) and computes the phase voltages to be
applied to the motor with the purpose of achieving Iq and Id regulation. As a result of the
computation, the object members (Vqd, Vαβ, Iαβ, Iab, Iqd, hElAngle) are also updated.

7.2 Procedure for motor ramp-up for sensorless algorithms

Figure 6. Motor ramp-up procedure

Figure 6 illustrates how motor rev-up is handled when STO_SPD or STOC_SPD objects are
used as a main sensor. As already mentioned, the rev-up is divided into portions (also called
'phases' or 'stages') during which both the applied electrical frequency and the amplitude of
the phase motor current change linearly.

Every time a new rev-up phase begins, the RUC_Exec method configures both the virtual
speed sensor and the speed and torque controller in order to get the right electrical
frequency and amplitude increases throughout the phase.

The electrical frequency increase is carried out by the virtual speed sensor which, at the MF
clock rate (default value 500Hz), updates the applied electrical frequency by integrating the
acceleration (set by RUC via the VSPD_SetMecAcceleration method). The electrical angle
is updated at the same time as the HF clock rate (the default value is the PWM frequency)
by integrating the applied electrical frequency. As the oSPD held by the FOC drive object
has been previously set to be equal to the virtual speed sensor object (oVss) using the
SPD_SetSpeedSensor method, the oVss electrical angle is then used to orient correctly the
stator current components, Iq and Id.

In the meantime, the motor phase current target amplitude is also changed. This is handled
by the STC_CalcTorqueReference method (clocked by MF clock) on the oSTC object
(previously configured in STC_TORQUE_MODE for this purpose). The current component

FOC_CurrRegulator
…

…

Iqdref

HF clock

FOC_SetCurrRef

SPD_GetElAngle(oSPD,…)

oSPD

FOC_SetSpeedSensor

Same class method

Other class method

Class member

Extract of FOC Class
bDriveInput = EXTERNAL
oSPD = oVSS

Extract of STC class
bMode=STC_TORQUE_MODE

bMode hTargetFinal

hRampRemainingSteps
STC_SetControlMode

STC_CalcTorqueReference
…

MF clock

wIncDecAmount

Extract of VSPD_SPD Class

hElAngle

hElSpeedDpp

SPD_CalcAvrgMecSpeed01Hz
MF clock

SPD_CalcElAngle
HF clock

Extract of RUC class

oSTC

oVSS

RUC_Exec
….

…

MF clock

STC_ExecRamp(oSTC,…)

VSPD_SetMecAcceleration(oVSS, …)

pPhaseParams

RUC_Init

wElAccDppP32

UM1053 Class interaction

Doc ID 18459 Rev 4 33/42

references (Iqdref) provided by oSTC is fed to oFOC which is set in EXTERNAL mode, so
that it can accept such references.

7.3 Rotor alignment for encoder calibration

Figure 7. Rotor alignment for encoder calibration

The quadrature encoder is a relative position sensor. Because absolute information is
required for performing a field-oriented control, it is necessary to establish a 0° position. This
task is performed by means of an encoder calibration phase, which is carried out by default
on user demand. This phase imposes a null reference flux (Id) and a torque reference flux
(Iq) with a linearly increasing magnitude and a constant orientation.

When properly configured, at the end of this phase, the rotor is locked in a well-known
position and the encoder timer counter is initialized accordingly.

To perform this task (see Figure 7), the Encoder Alignment Controller (oEAC) configures a
virtual speed sensor object in order to provide a constant programmable angle throughout
the alignment duration. A mechanical acceleration is set equal to 0. oEAC also configures
the speed and torque controller in STC_TORQUE_MODE and commands the start of a
ramp with proper duration and final current amplitude. The STC_CalcTorqueReference
method (clocked at MF) works as a ramp generator and its output is fed through the
FOC_SetCurrRef method to the oFOC object (previously set in EXTERNAL mode).

As soon as the alignment duration is finished, oEAC initializes the speed/position sensor
electrical angle correctly using the SPD_SetMechanicalAngle method.

Figure 8 illustrates the temporal Iq current amplitude variation and the convention used for
the current orientation.

Class interaction UM1053

34/42 Doc ID 18459 Rev 4

Figure 8. Stator current orientation convention and amplitude temporal variation

UM1053 Description of tasks

Doc ID 18459 Rev 4 35/42

8 Description of tasks

This section describes the four tasks that are necessary for each motor in order to manage
the motor drives correctly.

8.1 Low frequency task
The low frequency task executes the tasks related to each of the drives in sequence. It
includes those duties that do not require a very precise timing and/or that need a low refresh
rate, such as a stop state permanency time or boot capacitors charge time counting. The
default refresh rate is 100 Hz and the priority should be set just above the background
(main) priority (tskIDLE_PRIORITY+1 in the case of FreeRTOS based applications, for
example).

User commands such as run or stop motor are also processed in this task. Refer to
(UM1052) for more information about user commands that can be provided to the MC
application layer.

Figure 9 shows the low frequency task flow diagram. Note that the IDLE_ALIGNMENT state
is only available if the encoder is being used either as a main or an auxiliary sensor.

Figure 9. Low frequency task flow diagram

Description of tasks UM1053

36/42 Doc ID 18459 Rev 4

8.2 Medium frequency task
The medium frequency task executes the tasks related to each of the drives in sequence. It
executes certain control duties depending on the state of the related state machine. Duties
requiring a specific timing, such as speed controller are executed with a default task refresh
rate of 500 Hz. To function correctly, the priority of this task must be higher that the low
frequency task priority.

Figure 10 shows the medium frequency task flow diagram.

Figure 10. The medium frequency task flow diagram

8.3 High frequency task
For a given motor and depending on the present state of the related state machine, the high
frequency task executes the motor control duties that require a high frequency rate and
precise timing such as FOC current control loop.

The high frequency task execution is triggered by the ADC JEOC interrupt, which sanctions
the end of the related motor phase currents reading. Because this trigger is only available in
the START, START_RUN, IDLE_ALIGNMENT and ALIGNMENT states, the high frequency
task is only executed in these states and it is not triggered in the resting cases.

UM1053 Description of tasks

Doc ID 18459 Rev 4 37/42

When being executed, the high frequency execution rate is strongly related to the PWM
frequency. This execution rate can be computed as the corresponding drive PWM frequency
divided by the REGULATION_EXECUTION_RATE parameter in Drive parameters.h (for
motor 1) or the REGULATION_EXECUTION_RATE2 parameter n Drive parameters motor
2.h (for motor 2).

In case of a dual motor control, a FIFO mechanism has been put in place in order to execute
the FOCs of both the motors in the right sequence. The FOC execution related to a given
motor is booked inside the TIMxUpdate ISR, leading the A/D conversions for that motor
currents reading by approximately half the PWM period.

In order to function correctly, the priority of this task must be set as the highest priority
available in the application.

Description of tasks UM1053

38/42 Doc ID 18459 Rev 4

Figure 11. High frequency task flow diagram

8.4 Safety task
The safety task executes the safety checks (bus voltage and temperature, for example)
related to each of the drives, in sequence. The actions to be taken in case of an over-voltage
are managed here. These tasks are:

● turning on low side switches

● turning off PWM or turning on the brake resistor, depending on the
ON_OVER_VOLTAGE definition in Drive parameters.h.

The default execution rate for this task is 2 kHz.

Figure 12 shows the safety task flow diagram.

UM1053 Description of tasks

Doc ID 18459 Rev 4 39/42

Figure 12. Safety task flow diagram

Bibliography UM1053

40/42 Doc ID 18459 Rev 4

9 Bibliography

[1] Armstrong, The Quarks of Object-Oriented Development. In descending order of
popularity, the “quarks” are: Inheritance, Object, Class, Encapsulation, Method,
Message Passing, Polymorphism, Abstraction.

[2] Pierce, Benjamin (2002). MIT Press. ISBN 0-262-16209-1, section 18.1 “What is Object-
Oriented Programming?”.

[3] John C. Mitchell, Concepts in programming languages, Cambridge University Press,
2003, SBN 0-521-78098-5, p.278.

[4] Michael Lee Scott, Programming language pragmatics, Edition 2, Morgan Kaufmann,
2006, ISBN 0-12-633951-1, p. 470.

[5] Abadi, Martin; Cardelli, Luca (1996). A Theory of Objects. Springer-Verlag New York,
Inc.. ISBN 0387947752. Retrieved 2010-04-21.

UM1053 Revision history

Doc ID 18459 Rev 4 41/42

10 Revision history

Table 8. Document revision history

Date Revision Changes

08-Apr-2011 1 Initial release.

24-May-2011 2
Added references for web and confidential distributions of STM32
FOC PMSM SDK v3.0

28-Mar-2012 3
The product range has been expanded from “STM32F103xx or
STM32F100xx” microcontrollers to “STM32F100x/103x/2x/40x/41x”
microcontrollers.

14-Nov-2012 4

Added “STM32F05xx" to the product range, which has impacted the
title, the Introduction, Table 2: Derived classes and Table 3: Speed
and position feedback (CSPD) and its derived classes.

Replaced “STM32F40xx” and “STM32F41xx” by “STM32F4xx” in the
title.

Changed the software library version (from v3.2 to v3.3).

Added Table 1: Applicable products.

UM1053

42/42 Doc ID 18459 Rev 4

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2012 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 Documentation architecture
	1.1 Where to find the information you need
	1.2 Related documents

	2 Object-oriented programming (OOP)
	3 Advantages of object-oriented programming
	3.1 Efficient multiple motor control
	3.2 Increased safety through data hiding
	3.3 Modularity
	3.4 Abstraction

	4 STM32 PMSM FOC FW library C implementation of OOP
	4.1 Generic classes source files organization and content
	4.2 Inheritance implementation
	4.3 Derived classes source file organization and content
	4.4 Motor control library related interrupt handling

	5 How to create a user-defined class
	6 STM32 PMSM FOC FW library v3.3 class list
	6.1 Current reading and PWM generation (CPWMC) and its derived classes
	6.2 Speed and position feedback (CSPD) and its derived classes
	6.3 Field-oriented control drive (CFOC) and its derived classes
	6.4 Bus voltage sensor (CVBS) and its derived classes
	6.5 Temperature sensor (CTSNS) and its derived classes
	6.6 Digital Output (CDOUT) class
	6.7 Encoder Alignment Controller (CEAC) class
	6.8 Rev-up controller (CRUC) class
	6.9 Speed and torque controller (CSTC) class
	6.10 State machine (STM) class
	6.11 PI (CPI) and PID (CPID) controller classes

	7 Class interaction
	7.1 Field orientation, speed and torque control procedures
	7.2 Procedure for motor ramp-up for sensorless algorithms
	7.3 Rotor alignment for encoder calibration

	8 Description of tasks
	8.1 Low frequency task
	8.2 Medium frequency task
	8.3 High frequency task
	8.4 Safety task

	9 Bibliography
	10 Revision history

