

AN4838 Application note

Managing memory protection unit (MPU) in STM32 MCUs

Introduction

This application note describes how to manage the MPU in the STM32 products which is an optional component for the memory protection. Including the MPU in the STM32 microcontrollers makes them more robust and reliable. The MPU must be programmed and enabled before using it. If the MPU is not enabled, there is no change in the memory system behavior.

This application note concerns all the STM32 products that include $Cortex^{\ensuremath{\mathbb{R}}}$ -M0+/M3/M4 and M7 design which support the MPU.

For more details about the MPU, refer to the following documents available on www.st.com:

- STM32F7 Series Cortex[®]-M7 processor programming manual (PM0253)
- STM32F3 and STM32F4 Series Cortex[®]-M4 programming manual (PM0214)
- STM32F10xxx/20xxx/21xxx/L1xxxx Cortex[®]-M3 programming manual (PM0056)
- STM32L0 Series Cortex[®]-M0+ programming manual (PM0223)

Туре	Part Number
Microcontrollers	STM32F1 Series, STM32F2 Series, STM32F3 Series, STM32F4 Series, STM32F7 Series, STM32L0 Series, STM32L1 Series, STM32L4 Series

Table 1. Applicable products

Contents

1	Overview					
	1.1	Memory model				
2	Memo	ory types, registers and attributes8				
	2.1	Memory types				
	2.2	MPU Registers description 8				
	2.3	Memory attributes				
	2.4	Comparison of MPU features between Cortex®-M0+, Cortex®-M3/M4 and Cortex®-M711				
3	Exam	ple for setting up the MPU with cube HAL				
4	Conclusion					
5	Revision history					

List of tables

Applicable products	1
Region attributes and size in MPU_RASR register.	9
Access permission of regions	9
Cache properties and shareability	0
Comparison of MPU features between Cortex®-M0+, Cortex®-M3/M4 and	
Cortex®-M7	1
Example of setting up the MPU	2
Document revision history	5
	Applicable products Region attributes and size in MPU_RASR register. Region attributes and size in MPU_RASR register. Access permission of regions Second Seco

List of figures

Figure 1.	Example of overlapping regions	6
Figure 2.	Processor memory map	7

1 Overview

The MPU can be used to make an embedded system more robust and more secure by:

- Prohibiting the user applications from corrupting data used by critical tasks (such as the operating system kernel).
- Defining the SRAM memory region as a non-executable (eXecute Never XN) to prevent code injection attacks.
- Changing the memory access attributes.

The MPU can be used to protect up to eight memory regions. These, in turn can have eight subregions, if the region is at least 256 bytes. The subregions are always of equal size, and can be enabled or disabled by a subregion number. Because the minimum region size is driven by the cache line length (32 bytes), 8 subregions of 32 bytes corresponds to a 256 bytes size.

The regions are numbered 0-7. In addition, there is another region called the default region with an id of -1. All the 0-7 memory regions take priority over the default region.

The regions can overlap, and can be nested. The region 7 has the highest priority and the region 0 has the lowest one and this governs how overlapping the regions behave. The priorities are fixed, and cannot be changed.

Figure 1 shows an example with six regions. This example shows the region 4 overlapping the region 0 and 1. The region 5 is enclosed completely within the region 3. Since the priority is in an ascending order, the overlap regions (in yellow) have the priority. So if the region 0 is writeable and the region 4 is not, an address falling in the overlap between 0 and 4 will be not writeable.

The MPU is unified, meaning that there are not separate regions for the data and the instructions.

The MPU can be used also to define other memory attributes such as the cacheability, which can be exported to the system level cache unit or the memory controllers. The memory attribute settings can support 2 levels of cache: inner cache and outer cache.

The cache control is done globally by the cache control register, but the MPU can specify the cache policy and whether the region is cacheable or not. The MPU allows to set the cache attributes for level 1 (L1) cache by region (only for the STM32F7 Series which implements a L1-Cache).

1.1 Memory model

In the STM32 products, the processor has a fixed default memory map that provides up to 4Gbytes of addressable memory. The memory map is:

2 Memory types, registers and attributes

The memory map and the programming of the MPU split the memory map into regions. Each region has a defined memory type, and memory attributes. The memory type and attributes determine the behavior of accesses to the region.

2.1 Memory types

There are three common memory types:

Normal memory: allows the load and store of bytes, half-words and words to be arranged by the CPU in an efficient manner (the compiler is not aware of memory region types). For the normal memory region the load /store is not necessarily performed by the CPU in the order listed in the program.

Device memory: within the device region, the loads and stores are done strictly in order. This is to ensure the registers are set in the proper order.

Strongly ordered memory: everything is always done in the programmatically listed order, where the CPU waits the end of load/store instruction execution (effective bus access) before executing the next instruction in the program stream. This can cause a performance hit.

2.2 MPU Registers description

The MPU registers are located at 0xE000ED90. There are 5 basic MPU registers and a number of alias registers for each of the regions. The following are used to set up regions in the MPU:

MPU_TYPE: read-only register used to detect the MPU presence.

MPU_CTRL: control register

MPU_RNR: region number, used to determine which region operations are applied to.

MPU_RBAR: region base address.

MPU_RASR: region attributes and size.

MPU_RBAR_An: alias n of MPU_RBAR, where n is 1 to 3.^(a)

MPU_RASR_An: alias n of MPU_RASR, where n is 1 to 3.^(a)

For more details about the MPU registers, refer to the programming manuals listed at the introduction section.

a. Cortex[®]-M0+ does not implement these registers.

2.3 Memory attributes

The Region Attributes and Size Register (MPU_RASR) is where all the memory attributes are set. *Table 2* shows a brief description about the region attributes and size in the MPU_RASR register.

Bits	Name	Description	
28	XN	Execute never	
26:24	AP	Data Access Permission field (RO, RW or No access)	
21:19	TEX	Type Extension field	
18	S	Shareable	
17	С	Cacheable	
16	В	Bufferable	
15:8	SRD	Subregion disable. For each subregion 1=disabled, 0=enabled.	
5:1	SIZE	Specifies the size of the MPU protection region.	

Table 2. Region attributes and size in MPU_RASR register

- The XN flag controls the code execution. In order to execute an instruction within the region, there must be read access for the privilege level, and XN must be 0. Otherwise a MemManage fault will be generated.
- The data Access Permission (AP) field defines the AP of memory region. Table 3 illustrates the access permissions:

AP[2:0]	Privileged Unprivileged permissions permissions		Description
000	No access	No access	All accesses generate a permission fault
001	RW	No access	Access from a privileged software only
010	RW	RO	Written by an unprivileged software generate a permission fault
011	RW	RW	Full access
100	Unpredictable	Unpredictable	Reserved
101	RO	No access	Read by a privileged software only
110	RO	RO	Read only, by privileged or unprivileged software
111	RO	RO	Read only, by privileged or unprivileged software

Table 3. Access permission of regions

- The S field is for a shareable memory region: the memory system provides data synchronization between bus masters in a system with multiple bus masters, for example, a processor with a DMA controller. Strongly-ordered memory is always shareable. If multiple bus masters can access a non-shareable memory region, the software must ensure the data coherency between the bus masters.
- The TEX, C and B bits are used to define cache properties for the region, and to some extent, its shareability. They are encoded as per the following table:

TEX	С	В	Memory Type	Description	Shareable
000	0	0	Strongly Ordered	Strongly Ordered	Yes
000	0	1	Device	Shared Device	Yes
000	1	0	Normal	Write through, no write allocate	S bit
000	1	1	Normal	Write-back, no write allocate	S bit
001	0	0	Normal	Non-cacheable	S bit
001	0	1	Reserved	Reserved	Reserved
001	1	0	Undefined	Undefined	Undefined
001	1	1	Normal	Write-back, write and read allocate	S bit
010	0	0	Device	Non-shareable device	No
010	0	1	Reserved	Reserved	Reserved

Table 4. Cache properties and shareability

 The Subregion Disable bits (SRD) flag whether a particular subregion is enabled or disabled. Disabling a subregion means that another region overlapping the disabled range matches instead. If no other enabled region overlaps the disabled subregion the MPU issues a fault.

For the products that implement a cache (only for STM32F7 Series that implement L1-cache) the additional memory attributes include:

- Cacheable/ non-cacheable: means that the dedicated region can be cached or not.
- Write through with no write allocate: on hits it writes to the cache and the main memory, on misses it updates the block in the main memory not bringing that block to the cache.
- Write-back with no write allocate: on hits it writes to the cache setting dirty bit for the block, the main memory is not updated. On misses it updates the block in the main memory not bringing that block to the cache.
- Write-back with write and read allocate: on hits it writes to the cache setting dirty bit for the block, the main memory is not updated. On misses it updates the block in the main memory and brings the block to the cache.

2.4 Comparison of MPU features between Cortex[®]-M0+, Cortex[®]-M3/M4 and Cortex[®]-M7

There are few differences at the MPU level between $Cortex^{\$}$ -M0+, $Cortex^{\$}$ -M3/M4 and $Cortex^{\$}$ -M7, so the user must be aware of them if the MPU configuration software has to be used. *Table 5* illustrates the differences of the MPU features between $Cortex^{\$}$ -M0+, $Cortex^{\$}$ -M3/M4 and $Cortex^{\$}$ -M7.

	Conte		
	Cortex [®] -M0+	Cortex [®] -M3/M4	Cortex [®] -M7
Number of regions	8	8	8
Unified I and D regions	Yes	Yes	Yes
Region address	Yes	Yes	Yes
Region size	256 bytes to 4 Gbytes	32 bytes to 4 Gbytes	32 bytes to 4 Gbytes
Region memory attributes S, C, B, XN ⁽¹⁾ (*)		TEX, S, C, B, XN	TEX, S, C, B, XN
Region access Yes		Yes	Yes
Subregion disable	8 bits	8 bits	8 bits
MPU bypass for Yes NMI/Hardfault		Yes	Yes
Alias of MPU registers No		Yes	Yes
Fault exception	Hardfault only	Hardfault / MemManage	Hardfault/ MemManage

Table 5. Comparison of MPU features betwee	n Cortex [®] -M0+,	Cortex [®] -M3/M4	and
Cortex [®] -M	7		

1. cortex $^{\ensuremath{\mathbb{R}}}$ -M0+ supports one level of cache policy that's why the TEX field is not available in cortex $^{\ensuremath{\mathbb{R}}}$ -M0+ processor.

3 Example for setting up the MPU with cube HAL

The table below describes an example of setting up the MPU with the following memory regions: Internal SRAM, Flash memory and peripherals. The default memory map is used for privileged accesses as a background region, the MPU is not enabled for the hard fault handler and NMI.

Internal SRAM: 8 Kbytes of internal SRAM will be configured as Region0.

Memory attributes: shareable memory, write through with no write allocate, full access permission and code execution enabled.

Flash memory: the whole Flash memory will be configured as Region1.

Memory attributes: non-shareable memory, write through with no write allocate, full access permission and code execution enabled.

Peripheral region: will be configured as Region2.

Memory attributes: shared device, full access permission and execute never.

Usage	Memory type	Base address	Region number	Memory size	Memory attributes
Internal SRAM	Normal memory	0x2000 0000	Region0	8 Kbytes	Shareable, write through, no write allocate C=1, B = 0, TEX = 0, S=1 SRD = 0, XN= 0, AP = full access
Flash memory	Normal memory	0x0800 0000	Region1	1 Mbyte	Non-shareable write through, no write allocate C=1, B = 0, TEX = 0, S=0 SRD = 0, XN= 0, AP = full access
FMC	Normal memory	0x6000 0000	Region2	512 Mbytes	Shareable, write through, no write allocate C=1, B = 0, TEX = 0, S=1 SRD = 0, XN= 0, AP = full access

Table 6. Example of setting up the MPU

Setting the MPU with cube HAL

```
void MPU_RegionConfig(void)
```

```
{
```

MPU_Region_InitTypeDef MPU_InitStruct;

```
/* Disable MPU */
HAL_MPU_Disable();
```

```
/* Configure RAM region as Region N°0, 8kB of size and R/W region */
MPU_InitStruct.Enable = MPU_REGION_ENABLE;
MPU_InitStruct.BaseAddress = 0x20000000;
MPU_InitStruct.Size = MPU_REGION_SIZE_8KB;
MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;
MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE;
```



```
MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE;
MPU_InitStruct.IsShareable = MPU_ACCESS_SHAREABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER0;
MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;
MPU_InitStruct.SubRegionDisable = 0x00;
MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/* Configure FLASH region as REGION N°1, 1MB of size and R/W region */
MPU_InitStruct.BaseAddress = 0x08000000;
MPU_InitStruct.Size = MPU_REGION_SIZE_1MB;
MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER1;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/* Configure FMC region as REGION N°2, 0.5GB of size, R/W region */
MPU_InitStruct.BaseAddress = 0x6000000;
MPU_InitStruct.Size = MPU_REGION_SIZE_512MB;
MPU_InitStruct.IsShareable = MPU_ACCESS_SHAREABLE;
MPU_InitStruct.Number = MPU_REGION_NUMBER2;
HAL_MPU_ConfigRegion(&MPU_InitStruct);
/* Enable MPU */
HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT);
```


}

4 Conclusion

Using the MPU in the STM32 microcontrollers makes them robust, reliable and in some cases more secure by preventing the application tasks from accessing or corrupting the stack and data memory used by the other tasks.

This application note is a description of the different memory attributes, the types and the MPU registers.

It provides also an example for setting up the MPU with the cube HAL to illustrate how to configure the MPU in the STM32 MCUs.

For more details about the MPU registers, refer to the Cortex $^{\ensuremath{\mathbb{R}}}$ -M7/M3/M4/M0+ programming manuals available on ST's web site.

5 Revision history

|--|

Date	Revision	Changes
24-Mar-2016	1	Initial release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

DocID029037 Rev 1

