
March 2016 DocID029037 Rev 1 1/16

1

AN4838
Application note

Managing memory protection unit (MPU) in STM32 MCUs 

 

Introduction

This application note describes how to manage the MPU in the STM32 products which is an 
optional component for the memory protection. Including the MPU in the STM32 
microcontrollers makes them more robust and reliable. The MPU must be programmed and 
enabled before using it. If the MPU is not enabled, there is no change in the memory system 
behavior.

This application note concerns all the STM32 products that include Cortex®-M0+/M3/M4 
and M7 design which support the MPU.

For more details about the MPU, refer to the following documents available on www.st.com:

• STM32F7 Series Cortex®-M7 processor programming manual (PM0253)

• STM32F3 and STM32F4 Series Cortex®-M4 programming manual (PM0214)

• STM32F10xxx/20xxx/21xxx/L1xxxx Cortex®-M3 programming manual (PM0056)

• STM32L0 Series Cortex®-M0+ programming manual (PM0223)

          

Table 1. Applicable products

Type Part Number

Microcontrollers
STM32F1 Series, STM32F2 Series, STM32F3 Series, STM32F4 Series, 
STM32F7 Series, STM32L0 Series, STM32L1 Series, STM32L4 Series

www.st.com

http://www.st.com


Contents AN4838

2/16 DocID029037 Rev 1

Contents

1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Memory model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Memory types, registers and attributes  . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 Memory types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 MPU Registers description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Memory attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Comparison of MPU features between Cortex®-M0+,  
Cortex®-M3/M4 and Cortex®-M7  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

3 Example for setting up the MPU with cube HAL  . . . . . . . . . . . . . . . . . 12

4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Revision history  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15



DocID029037 Rev 1 3/16

AN4838 List of tables

3

List of tables

Table 1. Applicable products  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Region attributes and size in MPU_RASR register. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 3. Access permission of regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 4. Cache properties and shareability  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 5. Comparison of MPU features between Cortex®-M0+, Cortex®-M3/M4 and  

Cortex®-M7  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 6. Example of setting up the MPU  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 7. Document revision history  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15



List of figures AN4838

4/16 DocID029037 Rev 1

List of figures

Figure 1. Example of overlapping regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 2. Processor memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7



DocID029037 Rev 1 5/16

AN4838 Overview

15

1 Overview

The MPU can be used to make an embedded system more robust and more secure by:

• Prohibiting the user applications from corrupting data used by critical tasks (such as the 
operating system kernel).

• Defining the SRAM memory region as a non-executable (eXecute Never XN) to 
prevent code injection attacks.

• Changing the memory access attributes.

The MPU can be used to protect up to eight memory regions. These, in turn can have eight 
subregions, if the region is at least 256 bytes. The subregions are always of equal size, and 
can be enabled or disabled by a subregion number. Because the minimum region size is 
driven by the cache line length (32 bytes), 8 subregions of 32 bytes corresponds to a 256 
bytes size.

The regions are numbered 0-7. In addition, there is another region called the default region 
with an id of -1. All the 0-7 memory regions take priority over the default region.

The regions can overlap, and can be nested. The region 7 has the highest priority and the 
region 0 has the lowest one and this governs how overlapping the regions behave. The 
priorities are fixed, and cannot be changed. 

Figure 1 shows an example with six regions. This example shows the region 4 overlapping 
the region 0 and 1. The region 5 is enclosed completely within the region 3. Since the 
priority is in an ascending order, the overlap regions (in yellow) have the priority. So if the 
region 0 is writeable and the region 4 is not, an address falling in the overlap between 0 and 
4 will be not writeable.



Overview AN4838

6/16 DocID029037 Rev 1

Figure 1. Example of overlapping regions

The MPU is unified, meaning that there are not separate regions for the data and the 
instructions.

The MPU can be used also to define other memory attributes such as the cacheability, 
which can be exported to the system level cache unit or the memory controllers. The 
memory attribute settings can support 2 levels of cache: inner cache and outer cache.

The cache control is done globally by the cache control register, but the MPU can specify 
the cache policy and whether the region is cacheable or not. The MPU allows to set the 
cache attributes for level 1 (L1) cache by region (only for the STM32F7 Series which 
implements a L1-Cache). 



DocID029037 Rev 1 7/16

AN4838 Overview

15

1.1 Memory model

In the STM32 products, the processor has a fixed default memory map that provides up to 
4Gbytes of addressable memory. The memory map is:

Figure 2. Processor memory map



Memory types, registers and attributes AN4838

8/16 DocID029037 Rev 1

2 Memory types, registers and attributes

The memory map and the programming of the MPU split the memory map into regions. 
Each region has a defined memory type, and memory attributes. The memory type and 
attributes determine the behavior of accesses to the region.

2.1 Memory types

There are three common memory types:

Normal memory: allows the load and store of bytes, half-words and words to be arranged 
by the CPU in an efficient manner (the compiler is not aware of memory region types). For 
the normal memory region the load /store is not necessarily performed by the CPU in the 
order listed in the program.

Device memory: within the device region, the loads and stores are done strictly in order. 
This is to ensure the registers are set in the proper order.

Strongly ordered memory: everything is always done in the programmatically listed order, 
where the CPU waits the end of load/store instruction execution (effective bus access) 
before executing the next instruction in the program stream. This can cause a performance 
hit.

2.2 MPU Registers description

The MPU registers are located at 0xE000ED90. There are 5 basic MPU registers and a 
number of alias registers for each of the regions. The following are used to set up regions in 
the MPU:

MPU_TYPE: read-only register used to detect the MPU presence.

MPU_CTRL: control register

MPU_RNR: region number, used to determine which region operations are applied to.

MPU_RBAR: region base address.

MPU_RASR: region attributes and size.

MPU_RBAR_An: alias n of MPU_RBAR, where n is 1 to 3.(a)

MPU_RASR_An: alias n of MPU_RASR, where n is 1 to 3.(a)

For more details about the MPU registers, refer to the programming manuals listed at the 
introduction section.

a. Cortex®-M0+ does not implement these registers.



DocID029037 Rev 1 9/16

AN4838 Memory types, registers and attributes

15

2.3 Memory attributes

The Region Attributes and Size Register (MPU_RASR) is where all the memory attributes 
are set. Table 2 shows a brief description about the region attributes and size in the 
MPU_RASR register.

          

• The XN flag controls the code execution. In order to execute an instruction within the 
region, there must be read access for the privilege level, and XN must be 0. Otherwise 
a MemManage fault will be generated.

• The data Access Permission (AP) field defines the AP of memory region. Table 3 
illustrates the access permissions:

          

• The S field is for a shareable memory region: the memory system provides data 
synchronization between bus masters in a system with multiple bus masters, for 
example, a processor with a DMA controller. Strongly-ordered memory is always 
shareable. If multiple bus masters can access a non-shareable memory region, the 
software must ensure the data coherency between the bus masters.

• The TEX, C and B bits are used to define cache properties for the region, and to some 
extent, its shareability. They are encoded as per the following table:

Table 2. Region attributes and size in MPU_RASR register

Bits Name Description

28 XN Execute never

26:24 AP Data Access Permission field (RO, RW or No access)

21:19 TEX Type Extension field

18 S Shareable 

17 C Cacheable

16 B Bufferable

15:8 SRD Subregion disable. For each subregion 1=disabled, 0=enabled.

5:1 SIZE Specifies the size of the MPU protection region.

Table 3. Access permission of regions

AP[2:0]
Privileged 

permissions
Unprivileged 
permissions

Description

000 No access No access All accesses generate a permission fault

001 RW No access Access from a privileged software only

010 RW RO
Written by an unprivileged software generate a 
permission fault

011 RW RW Full access

100 Unpredictable Unpredictable Reserved

101 RO No access Read by a privileged software only 

110 RO RO Read only, by privileged or unprivileged software

111 RO RO Read only, by privileged or unprivileged software



Memory types, registers and attributes AN4838

10/16 DocID029037 Rev 1

          

• The Subregion Disable bits (SRD) flag whether a particular subregion is enabled or 
disabled. Disabling a subregion means that another region overlapping the disabled 
range matches instead. If no other enabled region overlaps the disabled subregion the 
MPU issues a fault.

For the products that implement a cache (only for STM32F7 Series that implement L1-
cache) the additional memory attributes include:

• Cacheable/ non-cacheable: means that the dedicated region can be cached or not.

• Write through with no write allocate: on hits it writes to the cache and the main 
memory, on misses it updates the block in the main memory not bringing that block to 
the cache.

• Write-back with no write allocate: on hits it writes to the cache setting dirty bit for the 
block, the main memory is not updated. On misses it updates the block in the main 
memory not bringing that block to the cache.

• Write-back with write and read allocate: on hits it writes to the cache setting dirty bit 
for the block, the main memory is not updated. On misses it updates the block in the 
main memory and brings the block to the cache.

Table 4. Cache properties and shareability 

TEX C B Memory Type Description Shareable

000 0 0 Strongly Ordered Strongly Ordered Yes

000 0 1 Device Shared Device Yes

000 1 0 Normal Write through, no write allocate S bit

000 1 1 Normal Write-back, no write allocate S bit

001 0 0 Normal Non-cacheable S bit 

001 0 1 Reserved Reserved Reserved 

001 1 0 Undefined Undefined Undefined 

001 1 1 Normal Write-back, write and read allocate S bit 

010 0 0 Device Non-shareable device No 

010 0 1 Reserved Reserved Reserved 



DocID029037 Rev 1 11/16

AN4838 Memory types, registers and attributes

15

2.4 Comparison of MPU features between Cortex®-M0+,  
Cortex®-M3/M4 and Cortex®-M7

There are few differences at the MPU level between Cortex®-M0+, Cortex®-M3/M4 and 
Cortex®-M7, so the user must be aware of them if the MPU configuration software has to be 
used. Table 5 illustrates the differences of the MPU features between Cortex®-M0+, 
Cortex®-M3/M4 and Cortex®-M7.

          

Table 5. Comparison of MPU features between Cortex®-M0+, Cortex®-M3/M4 and 
Cortex®-M7

Cortex®-M0+ Cortex®-M3/M4 Cortex®-M7

Number of regions 8 8 8

Unified I and D regions Yes Yes Yes

Region address Yes Yes Yes

Region size 256 bytes to 4 Gbytes 32 bytes to 4 Gbytes 32 bytes to 4 Gbytes

Region memory 
attributes

S, C, B, XN (1)(*)

1. cortex®-M0+ supports one level of cache policy that’s why the TEX field is not available in cortex®-M0+ 
processor.

TEX, S, C, B, XN TEX, S, C, B, XN

Region access 
permission (AP)

Yes Yes Yes

Subregion disable 8 bits 8 bits 8 bits

MPU bypass for 
NMI/Hardfault

Yes Yes Yes

Alias of MPU registers No Yes Yes

Fault exception Hardfault only Hardfault / MemManage Hardfault/ MemManage



Example for setting up the MPU with cube HAL AN4838

12/16 DocID029037 Rev 1

3 Example for setting up the MPU with cube HAL

The table below describes an example of setting up the MPU with the following memory 
regions: Internal SRAM, Flash memory and peripherals. The default memory map is used 
for privileged accesses as a background region, the MPU is not enabled for the hard fault 
handler and NMI.

Internal SRAM: 8 Kbytes of internal SRAM will be configured as Region0. 

Memory attributes: shareable memory, write through with no write allocate, full access 
permission and code execution enabled.

Flash memory: the whole Flash memory will be configured as Region1. 

Memory attributes: non-shareable memory, write through with no write allocate, full access 
permission and code execution enabled.

Peripheral region: will be configured as Region2. 

Memory attributes: shared device, full access permission and execute never.

          

• Setting the MPU with cube HAL

void MPU_RegionConfig(void)

{

  MPU_Region_InitTypeDef MPU_InitStruct;

  /* Disable MPU */

  HAL_MPU_Disable();

  /* Configure RAM region as Region N°0, 8kB of size and R/W region */

  MPU_InitStruct.Enable = MPU_REGION_ENABLE;

  MPU_InitStruct.BaseAddress = 0x20000000;

  MPU_InitStruct.Size = MPU_REGION_SIZE_8KB;

  MPU_InitStruct.AccessPermission = MPU_REGION_FULL_ACCESS;

  MPU_InitStruct.IsBufferable = MPU_ACCESS_NOT_BUFFERABLE;

Table 6. Example of setting up the MPU 

Usage
Memory 

type
Base 

address
Region 
number

Memory size Memory attributes

Internal SRAM 
Normal 
memory

0x2000 0000 Region0 8 Kbytes

Shareable, write through, no write allocate

C=1, B = 0, TEX = 0, S=1

SRD = 0, XN= 0, AP = full access

Flash memory
Normal 
memory

0x0800 0000 Region1 1 Mbyte

Non-shareable write through, no write 
allocate

C=1, B = 0, TEX = 0, S=0

SRD = 0, XN= 0, AP = full access

FMC
Normal 
memory

0x6000 0000 Region2 512 Mbytes

Shareable, write through, no write allocate

C=1, B = 0, TEX = 0, S=1

SRD = 0, XN= 0, AP = full access



DocID029037 Rev 1 13/16

AN4838 Example for setting up the MPU with cube HAL

15

  MPU_InitStruct.IsCacheable = MPU_ACCESS_CACHEABLE;

  MPU_InitStruct.IsShareable = MPU_ACCESS_SHAREABLE;

  MPU_InitStruct.Number = MPU_REGION_NUMBER0;

  MPU_InitStruct.TypeExtField = MPU_TEX_LEVEL0;

  MPU_InitStruct.SubRegionDisable = 0x00;

  MPU_InitStruct.DisableExec = MPU_INSTRUCTION_ACCESS_ENABLE;

  

  HAL_MPU_ConfigRegion(&MPU_InitStruct);

  

  /* Configure FLASH region as REGION N°1, 1MB of size and R/W region */

  MPU_InitStruct.BaseAddress = 0x08000000;

  MPU_InitStruct.Size = MPU_REGION_SIZE_1MB;

  MPU_InitStruct.IsShareable = MPU_ACCESS_NOT_SHAREABLE;

  MPU_InitStruct.Number = MPU_REGION_NUMBER1;

  

  HAL_MPU_ConfigRegion(&MPU_InitStruct);

  /* Configure FMC region as REGION N°2, 0.5GB of size, R/W region */

  MPU_InitStruct.BaseAddress = 0x60000000;

  MPU_InitStruct.Size = MPU_REGION_SIZE_512MB;

  MPU_InitStruct.IsShareable = MPU_ACCESS_SHAREABLE;

  MPU_InitStruct.Number = MPU_REGION_NUMBER2;

  

  

  HAL_MPU_ConfigRegion(&MPU_InitStruct);

  /* Enable MPU */

  HAL_MPU_Enable(MPU_PRIVILEGED_DEFAULT);

}



Conclusion AN4838

14/16 DocID029037 Rev 1

4 Conclusion

Using the MPU in the STM32 microcontrollers makes them robust, reliable and in some 
cases more secure by preventing the application tasks from accessing or corrupting the 
stack and data memory used by the other tasks.

This application note is a description of the different memory attributes, the types and the 
MPU registers.

It provides also an example for setting up the MPU with the cube HAL to illustrate how to 
configure the MPU in the STM32 MCUs.

For more details about the MPU registers, refer to the Cortex®-M7/M3/M4/M0+ 
programming manuals available on ST’s web site.



DocID029037 Rev 1 15/16

AN4838 Revision history

15

5 Revision history

          

Table 7. Document revision history

Date Revision Changes

24-Mar-2016 1 Initial release.



AN4838

16/16 DocID029037 Rev 1

          

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and 
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on 
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order 
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or 
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved


	Table 1. Applicable products
	1 Overview
	Figure 1. Example of overlapping regions
	1.1 Memory model
	Figure 2. Processor memory map


	2 Memory types, registers and attributes
	2.1 Memory types
	2.2 MPU Registers description
	2.3 Memory attributes
	Table 2. Region attributes and size in MPU_RASR register
	Table 3. Access permission of regions
	Table 4. Cache properties and shareability

	2.4 Comparison of MPU features between Cortex®-M0+, Cortex®-M3/M4 and Cortex®-M7
	Table 5. Comparison of MPU features between Cortex®-M0+, Cortex®-M3/M4 and Cortex®-M7


	3 Example for setting up the MPU with cube HAL
	Table 6. Example of setting up the MPU

	4 Conclusion
	5 Revision history
	Table 7. Document revision history


