
March 2015 DocID026161 Rev 2 1/74

UM1743
User manual

STM32CubeF4 demonstration platform

Introduction

The STM32CubeTM initiative was originated by STMicroelectronics to ease developers’ life 
by reducing development efforts, time and cost. STM32CubeTM covers the STM32 portfolio.

The STM32CubeF4 demonstration platform comes on top of the STM32CubeTM as a 
firmware package that offers a full set of software components based on a modules 
architecture allowing re-using them separately in standalone applications. All these modules 
are managed by the STM32CubeF4 demonstration kernel allowing to dynamically add new 
modules and access to common resources (storage, graphical components and widgets, 
memory management, Real-Time operating system)

The STM32CubeF4 demonstration platform is built around the powerful graphical library 
STemWin and the FreeRTOS real time operating system and uses almost the whole STM32 
capability to offer a large scope of usage based on the STM32Cube HAL BSP and several 
middleware components.

The architecture was defined with the goal of making from the STM32CubeF4 
demonstration core an independent central component which can be used with several 
RTOS and third party firmware libraries through several abstraction layers inserted between 
the STM32CubeF4 demonstration core and the several modules and libraries working 
around.

The STM32CubeF4 demonstration supports STM32F4xx devices and runs on 
STM324x9I-EVAL, STM324xG-EVAL, STM32F429I-Discovery and STM32446E-EVAL 
boards.

www.st.com

http://www.st.com


Contents UM1743

2/74 DocID026161 Rev 1

Contents

1 STM32Cube™ overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Global architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Kernel description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Kernel initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Kernel processes and tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Kernel graphical aspect  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11

3.5 Kernel menu management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.6 Modules manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.7 Direct open feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.8 Backup and settings configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.9 Storage units  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.10 Clock and Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.11 Memory Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.12 Demonstration repository . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.13 Kernel components  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.14 Kernel core files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.15 Hardware settings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 How to create a new module  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Creating the graphical aspect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Graphics customization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Module implementation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.4 Adding a module to the main desktop  . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Module's direct open  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Demonstration customization and configuration  . . . . . . . . . . . . . . . . 36

5.1 LCD configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.2 Layers management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Touchscreen calibration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



DocID026161 Rev 1 3/74

UM1743 Contents

3

5.4 BSP customization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4.1 SDRAM configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4.2 Touch screen configuration  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Performance  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1 Multi buffering features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2 Multi layers feature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.3 Hardware acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

7 Footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.1 Kernel footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.2 Module footprint  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7.3 STemWin Features resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.3.1 JPEG decoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.3.2 GUI Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8 Demonstration functional description  . . . . . . . . . . . . . . . . . . . . . . . . . 48

8.1 Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

8.1.1 CPU Usage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8.1.2 Kernel Log . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

8.1.3 Process Viewer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8.2 Modules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8.2.1 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

8.2.2 File Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

8.2.3 Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

8.2.4 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8.2.5 Audio  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

8.2.6 Video  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

8.2.7 USB Mass storage Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

8.2.8 Camera  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.2.9 Image viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

9 Revision history  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



List of tables UM1743

4/74 DocID026161 Rev 1

List of tables

Table 1. File system interface: physical storage control functions . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Table 2. File system interface APIs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 3. APIs from the RTC module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Table 4. APIs from the memory manager module  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Table 5. Kernel components list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 6. Kernel core files list. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Table 7. Jumpers for different demonstration boards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Table 8. LCD frame buffer locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 9. Camera frame buffer locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 10. Kernel files footprint  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 11. Modules footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 12. RAM requirements for some JPEG resolutions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 13. MemoSTemWin components memory requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 14. Widget memory requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 15. Available settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 16. Data structure for audio  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 17. Audio module controls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 18. Video module controls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 19. Batch files description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Table 20. Variables description  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 21. Parameters description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 22. Data structure for USBD module  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 23. USBD module controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 24. Camera module controls. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 25. Image viewer module controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 26. Document revision history  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



DocID026161 Rev 1 5/74

UM1743 List of figures

6

List of figures

Figure 1. STM32Cube block diagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2. STM32Cube architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 3. Kernel components and services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Figure 4. Startup window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 5. Startup window for STM32446E-EVAL demonstration. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 6. Main desktop window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 7. Main desktop window for STM32446E-EVAL demonstration . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 8. Status bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 9. Status bar for STM32446E-EVAL demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 10. Icon view widget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 11. Icon view widget for STM32446E-EVAL demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 12. Functionalities and properties of modules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 13. Starting file execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Figure 14. Starting file execution for STM32446E-EVAL demonstration . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 15. Available storage units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 16. Software architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 17. Detection of storage units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 18. Detection of storage units for STM32446E-EVAL demonstration. . . . . . . . . . . . . . . . . . . . 24
Figure 19. Setting the time and the date . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 20. Setting the time and the date for STM32446E-EVAL demonstration . . . . . . . . . . . . . . . . . 26
Figure 21. Memory heap for STM32CubeF4 demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 22. Folder structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 23. STM32Cube demonstration boards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 24. GUI Builder overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 25. Graphics customization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Figure 26. Direct open from file browser  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Figure 27. LCDConf location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Figure 28. k_calibration.c location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 29. Calibration steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 30. SDRAM initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 31. Touch screen initialization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 32. Example of tearing effect  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 33. Independent layer management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 34. CPU usage display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 35. CPU usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 36. Example of Log messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 37. Process viewer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 38. Demonstration global information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 39. Demonstration general settings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 40. Clock setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Figure 41. File browser  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Figure 42. File browser module architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 43. File opening from browser  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Figure 44. File properties display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 45. Reversi game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Figure 46. Benchmarking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 47. Audio player module architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 48. Audio player module startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58



List of figures UM1743

6/74 DocID026161 Rev 1

Figure 49. Video player module architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 50. Video player module startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Figure 51. EMF generation environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 52. JPEG2Movie overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 53. EMF file generation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 54. USBD module architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 55. USBD module startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 56. Camera module architecture  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 57. Camera module startup  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 58. Image viewer architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 59. Image viewer startup  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72



DocID026161 Rev 1 7/74

UM1743 STM32Cube™ overview

73

1 STM32Cube™ overview

The STM32CubeTM initiative was originated by STMicroelectronics to ease developers’ life 
by reducing development efforts, time and cost. STM32CubeTM covers the STM32 portfolio.

STM32CubeTM Version 1.x includes:

• The STM32CubeMX, a graphical software configuration tool that allows to generate C 
initialization code using graphical wizards.

• A comprehensive embedded software platform, delivered per series (such as 
STM32CubeF4 for STM32F4 series)

– The STM32CubeF4 HAL, an STM32 abstraction layer embedded software, 
ensuring maximized portability across STM32 portfolio

– A consistent set of middleware components such as RTOS, USB, TCP/IP, 
Graphics

– All embedded software utilities coming with a full set of examples.

Figure 1. STM32Cube block diagram



Global architecture UM1743

8/74 DocID026161 Rev 1

2 Global architecture

The STM32CubeF4 demonstration is composed of a central kernel based on a set of 
firmware and hardware services offered by the STM32Cube middleware and the several 
evaluation and discovery boards and a set of modules mounted on the kernel and built in a 
modular architecture. Each module can be reused separately in a standalone application. 
The full set of modules is managed by the Kernel which provides access to all common 
resources and facilitates the addition of new modules as shown in Figure 2.

Each module should provide the following functionalities and proprieties:

1. Icon and graphical aspect characteristics.

2. Method to startup the module.

3. Method to close down safety the module (example: Hot unplug for Unit Storage)

4. Method to manage low power mode

5. The module application core ( main module process) 

6. Specific configuration

7. Error management

Figure 2. STM32Cube architecture



DocID026161 Rev 1 9/74

UM1743 Kernel description

73

3 Kernel description

3.1 Overview

The role of the demonstration kernel is mainly to provide a generic platform that control and 
monitor all the application processes, the kernel provides a set of friendly user APIs and 
services that allow to the user modules to have access to all the hardware and firmware 
resources and provide the following tasks and services:

• Hardware and modules initialization:

– BSP initialization (LEDs, SDRAM, Touch screen, CRC, SRAM, RTC, QSPI and 
audio)

– GUI initialization and Touch screen calibration

• Memory management

• Kernel log

• Graphical resources and main menu management.

• Storage managements (USB Disk flash and microSD)

• System monitoring and settings

• Time and date resources management

• File browsing and contextual menu 

• CPU utilities (CPU usage, running tasks)

Figure 3. Kernel components and services



Kernel description UM1743

10/74 DocID026161 Rev 1

3.2 Kernel initialization

The first task of the kernel is to initialize the hardware and firmware resources to make them 
available to its internal processes and the modules around it. The kernel starts by initializing 
the HAL, system clocks and then the hardware resources needed during the middleware 
components:

• LEDs and Touchscreen

• SDRAM/SRAM

• Backup SRAM

• RTC

• QSPI Flash memory for STM32446E-EVAL demonstration board

• Audio Interface

Once the low level resources are initialized, the kernel performs the STemWin GUI library 
initialization and prepares the following common services:

• Memory manager

• Storage units

• Modules manager

• Kernel Log

Upon full initialization phase, the kernel adds and links the system and user modules to the 
demonstration core.

3.3 Kernel processes and tasks

The kernel is composed of two main tasks managed by FreeRTOS through the CMSIS-OS 
wrapping layer:

• GUI Thread: this task Initializes the demonstration main menu and then handles the 
graphical background task when requested by the STemWin;



DocID026161 Rev 1 11/74

UM1743 Kernel description

73

• Timer Callback: this is the callback of the Timer managing periodically the touch screen 
state, the Timer callback is called periodically each 100 milliseconds.

3.4 Kernel graphical aspect

The STM32CubeF4 demonstration is built around the STemWin Graphical Library, based on 
SEGGER emWin one. STemWin is a professional graphical stack library, enabling Graphical 
User Interfaces (GUI) building up with any STM32, any LCD and any LCD controller, taking 
benefit from STM32 hardware accelerations, whenever possible.

The graphical aspect of the STM32CubeF4 demonstration is divided into two main graphical 
components:

• the startup window (Figure 4 and Figure 5): showing the progress of the hardware and 
software initialization;

• the main desktop (shown in Figure 6 and in Figure 7), that handles the main 
demonstration menu and the numerous kernel and modules control.

Figure 4. Startup window



Kernel description UM1743

12/74 DocID026161 Rev 1

Figure 5. Startup window for STM32446E-EVAL demonstration

Figure 6. Main desktop window



DocID026161 Rev 1 13/74

UM1743 Kernel description

73

Figure 7. Main desktop window for STM32446E-EVAL demonstration

3.5 Kernel menu management

The main demonstration menu is initialized and launched by the GUI thread. Before the 
initialization of the menu the following actions are performed:

• Draw the background image.

• Create the status bar.

• Restore general settings from backup memory. 

• Setup the main desktop callback to manage main window messages. 

The main desktop is built around two main graphical components:

• The status bar (Figure 8 and Figure 9): indicates the storage units connection status, 
current time and date and a system button to allow to get system information like 
(running task, CPU load, and kernel log).

• The icon view widget (Figure 10 and Figure 11): contains the icons associated to added 
modules. User can launch a module by a simple click on the module icon.



Kernel description UM1743

14/74 DocID026161 Rev 1

Figure 8. Status bar

Figure 9. Status bar for STM32446E-EVAL demonstration



DocID026161 Rev 1 15/74

UM1743 Kernel description

73

Figure 10. Icon view widget

Figure 11. Icon view widget for STM32446E-EVAL demonstration



Kernel description UM1743

16/74 DocID026161 Rev 1

A module is launched on simple click on the associated icon by calling to the startup 
function in the module structure; this is done when a WM_NOTIFICATION_RELEASED 
message arrives to the desktop callback with ID_ICONVIEW_MENU:

3.6 Modules manager

The modules are managed by the kernel; the latter is responsible of initializing the modules, 
initializing hardware and GUI resources relative to the modules and initializing the common 
resources such as the storage Unit, the graphical widgets and the system menu.

Each module should provide the following functionalities and proprieties:

1. Icon and graphical component structure.

2. Method to startup the module.

3. Method to close down safety the module (example: Hot unplug for MS flash disk)

4. Method to manage low power mode (optional)

5. The Application task 

6. The module background process (optional)



DocID026161 Rev 1 17/74

UM1743 Kernel description

73

7. Remote control method (optional)

8. Specific configuration

9. Error management

Figure 12. Functionalities and properties of modules

The modules could be added in run time to the demonstration and can use the common 
kernel resources. The following code shows how to add a module to the demonstration:

A module is a set of function and data structures that are defined in a data structure that 
provides all the information and pointers to specific methods and functions to the kernel. 
This later checks the integrity and the validity of the module and inserts its structure into a 
module table.

Each module is identified by a unique ID. When two modules have the same UID, the Kernel 
rejects the second one. The module structure is defined as follows:



Kernel description UM1743

18/74 DocID026161 Rev 1

In this definition:

• Id: unique module identifier.

• Name: pointer to module name

• Icon: pointer to module icon (bitmap format)

• Startup: the function that create the module frame and control buttons

• DirectOpen: the function that create the module frame and launch the media 
associated to the file name selected in the file browser linked to a specific file 
extension.

3.7 Direct open feature

The direct open feature allows launching a media module directly from file browser when the 
extension file match with supported media type. The file extension should be previously 
associated to a module by using the following code:

For STM32446E-EVAL we have:

When the file browser is opened, a simple click on a file will open a contextual menu, that 
direct file open can be executed, as shown in Figure 13 and in Figure 14.

Figure 13. Starting file execution

Note: The video player module is not supported in STM32446E-EVAL demonstration.



DocID026161 Rev 1 19/74

UM1743 Kernel description

73

Figure 14. Starting file execution for STM32446E-EVAL demonstration

3.8 Backup and settings configuration

The STM32CubeF4 demonstration saves the kernel and modules settings in two different 
methods:

1. Using the RTC backup register (32 bits data width) , in this method the data to be saved 
should be a 32 bits data and could be defined as a bitfield structure, example:

The structure could be handled than, by using the two following kernel APIs to save or 
restore it from the RTC backup registers.

2. Using the backup SRAM: the backup SRAM is a memory that the content is not lost 
when the board is powered down. When available, the backup SRAM is 4 Kbytes size 



Kernel description UM1743

20/74 DocID026161 Rev 1

and located at address: BKPSRAM_BASE (0x40024000). The backup SRAM could be 
used as normal RAM to save file paths or big structure example:



DocID026161 Rev 1 21/74

UM1743 Kernel description

73

3.9 Storage units

The STM32CubeF4 demonstration kernel offers two storage units that can be used to 
retrieve audio, Image and Video media or to save captured images from the camera 
(Figure 15). 

Figure 15. Available storage units

The two units are initialized during the platform startup and thus they are available to all the 
modules during the STM32CubeF4 demonstration run time. These two units are accessible 
through the standard I/O operations offered by the FatFS used in the development platform. 
The USB Disk flash unit is identified as the Unit 0 and available only if a USB disk flash is 
connected on the USB FS connector, while the microSD flash is identified as the Unit1 and 
available only if the microSD card is connected. The units are mounted automatically when 
the physical media are connected to the connector on the board.

The implemented functions in the file system interface to deal with the physical storage units 
are summarized in Table 1.

          

Table 1. File system interface: physical storage control functions

Function Description

disk_initialize Initialize disk drive

disk_read Interface function for a logical page read

disk_write Interface function for a logical page write

disk_status Interface function for testing if unit is ready

disk_ioct Control device dependent features



Kernel description UM1743

22/74 DocID026161 Rev 1

The full APIs functions set given by the file system interface are listed in Table 2:

          

For the FAT FS file system, the page size is fixed to 512 bytes. USB disk flashes with higher 
page size are not supported.

Table 2. File system interface APIs 

Function Description

f_mount Register/Unregister a work area

f_open Open/Create a file

f_close Close a file

f_read Read file

f_write Write file

f_lseek Move read/write pointer, Expand file size

f_truncate Truncate file size

f_sync Flush cached data

f_opendir Open a directory

f_readdir Read a directory item

f_getfree Get free clusters

f_stat Get file status

f_mkdir Create a directory

f_unlink Remove a file or directory

f_chmod Change attribute

f_utime Change timestamp

f_rename Rename/Move a file or directory

f_mkfs Create a file system on the drive

f_forward Forward file data to the stream directly

f_chdir Change current directory

f_chdrive Change current drive

f_getcwd Retrieve the current directory

f_gets Read a string

f_putc Write a character 

f_puts Write a string

f_printf Write a formatted string 



DocID026161 Rev 1 23/74

UM1743 Kernel description

73

The Storage units are built around the USB host library in high speed and the microSD BSP 
drivers; the software architecture is shown in Figure 16. 

Figure 16. Software architecture

The FatFS is mounted upon the USB Host mass storage class and the SD BSP driver to 
allow an abstract access to the physical media through standard I/O methods.



Kernel description UM1743

24/74 DocID026161 Rev 1

The storage units' presence detection is handled internally by the kernel and the status bar 
shows the icons of the available media, as shown in Figure 17 and in Figure 18.

Figure 17. Detection of storage units

Figure 18. Detection of storage units for STM32446E-EVAL demonstration



DocID026161 Rev 1 25/74

UM1743 Kernel description

73

3.10 Clock and Date 

The clock and date are managed by the RTC HAL driver, the RTC module initializes the 
LSE source clock and provides a set of methods to retrieve date and clock in addition to 
backup save and restore ones. Table 3 shows the different APIs offered by the RTC module:

The following code shows an example of how to retrieve the system data:

The kernel uses the RTC for modules settings saving and getting the time and date, 
displayed in the status bar of the main desktop. Time and date could be changed through 
the system module, as shown in Figure 19 and in Figure 20.

Table 3. APIs from the RTC module

Function Description

k_calendarBkuplinit Initialize RTC peripheral (clock and backup registers)

k_BkupSaveParameter Save a 32bits word into backup registers

k_BkupRestoreParameter Retrieve a saved 32bits word from backup registers

k_SetTime Change system time through the RTC_TimeTypeDef 

k_GetTime Get system time into the RTC_TimeTypeDef structure

k_SetDate Change system date through the RTC_DateTypeDef 

k_GetDate Get system date into the RTC_DateTypeDef structure



Kernel description UM1743

26/74 DocID026161 Rev 1

Figure 19. Setting the time and the date

Figure 20. Setting the time and the date for STM32446E-EVAL demonstration

3.11 Memory Management

A huge amount of system RAM is allocated to the GUI internal heap, the kernel memory 
manager is used as a standalone memory allocator for some specific data blocks, like file 
lists and kernel log buffer.

The kernel memory manager is based on a single memory pool that could be placed 
anywhere in the additional internal or external memory resources. The memory heap is built 



DocID026161 Rev 1 27/74

UM1743 Kernel description

73

on a contiguous memory blocks managed by the mem_Typedef structure through a pages 
table that gather the block status after each memory allocation or de-allocation operations.

For the STM32CubeF4 demonstration, the memory heap is located in the CCM data RAM.

Figure 21. Memory heap for STM32CubeF4 demonstration

The memory manager offers a set of standard high level APIs to allocate and free memory 
block from the predefined pool. The granularity of the memory allocation is defined by the 
SIZE_OF_PAGE define, set to 1024 bytes by default and the total number of available 
blocks depending on the heap size, in the k_mem.h file as shown in the code below.

For STM32446E-EVAL demonstration, the memory heap is located in the external SDRAM 
memory.



Kernel description UM1743

28/74 DocID026161 Rev 1

Table 4 shows the different APIs offered by the memory manager module.

For STM32446E-EVAL demonstration, the different icons of the applications are stored in 
the external memory QSPI, configured in memory-mapped mode to the STM32 address 
space, and seen by the system as if it were an internal memory.

This mode provides a direct interface to access data from external SPI memory and thus 
simplify Software requirements.

3.12 Demonstration repository

The STM32Cube is a component in the STM32Cube package. Figure 22 shows the 
demonstration folder organization:

Table 4. APIs from the memory manager module

Function Description

void k_MemInit(void) Initialize the memory heap (base address)

void * k_malloc (size_t s) Allocate an amount of contiguous memory blocks

void k_free (void * p) Free an already allocated amount of RAM blocks



DocID026161 Rev 1 29/74

UM1743 Kernel description

73

Figure 22. Folder structure

The demonstration sources are located in the projects folder of the STM32Cube package for 
each supported board. The sources are divided into five groups described as follows:

1. Core: contains the kernel files

2. Modules: contains the system and user modules including the graphical aspect and the 
modules functionalities. 

3. Binary: demonstration binary file in Hex format

4. Config: all middleware's components and HAL configuration files

5. Project settings: a folder per tool chain containing the project settings and the linker 
files.



Kernel description UM1743

30/74 DocID026161 Rev 1

3.13 Kernel components

3.14 Kernel core files

Table 5. Kernel components list 

Function Description

Kernel core Kernel core and utilities

Modules User and system modules

STM32 HAL Drivers STM32Cube HAL driver relative to the STM32 device under use

BSP Drivers Evaluation board (or discovery kit) BSP drivers

CMSIS CMSIS Cortex®-M3/4 Device Peripheral Access Layer System

FatFS FATFS File system

FreeRTOS FreeRTOS Real Time Operating System

STemWin STemWin Graphical Library

USBD_Library USB Device Library (Mass Storage Class)

USBH_Library USB Host Library (Mass Storage Class)

Table 6. Kernel core files list 

Function Description

main.c Main program file

stm32fxxx_it.c Interrupt handlers for the application

k_bsp.c Provides the kernel BSP functions

k_calibration.c Touch screen calibration processes

k_log.c Kernel Log manager

k_mem.c Kernel memory heap manager

k_menu.c Kernel menu and desktop manager

k_module.c Modules manager

k_modules_res.c Common modules resources

k_rtc.c RTC and backup manager

k_startup.c Demonstration startup windowing process

k_storage Storage units manager

startup_stm32fyyyxx.s Startup file

cpu_utils.c CPU load calculation utility



DocID026161 Rev 1 31/74

UM1743 Kernel description

73

3.15 Hardware settings

The STM32CubeF4 demonstration supports STM32F4xx devices and runs on the following 
demonstration boards from STMicroelectronics:

• STM324x9I-EVAL

• STM324xG-EVAL

• STM32F429I-Discovery

• STM32446E-EVAL.

Figure 23. STM32Cube demonstration boards

Table 7. Jumpers for different demonstration boards 

Board Jumper Position description

STM324x9I-EVAL

JP16 Not fitted (used for USB device module)

JP4/JP5 <2-3> (used for Audio demonstration)

JP8 <2-3> (used for backup domain on battery)

STM324xG-EVAL

JP16 <2-3> (used for Audio demonstration)

JP19 <2-3> (used for backup domain on battery)

JP31 <2-3> (used for USB device module)

STM32F429I-Discovery
JP3 ON (Power on MCU)

CN4 ON (Discovery mode)

STM324446E-EVAL
JP4 <2-3> (used for USB device module)

JP19 <1-2> (used for audio player module)



How to create a new module UM1743

32/74 DocID026161 Rev 1

4 How to create a new module

A module is composed of two main parts:

• Graphical aspect: the main window frame and module's controls

• Functionalities: module functions and internal processes

4.1 Creating the graphical aspect

The graphical aspect consists of the main frame window in addition to the set of the visual 
elements and controls (buttons, check boxes, progress bars…) used to control and monitor 
the module's functionalities.

The STM32CubeF4 demonstration package provides a PC tool; the GUIBuilder (Figure 24) 
that allows easily and quickly creating the module frame window and all its components in 
few steps. For more information about the GUI Builder, refer to the emwin User and 
reference guide (UM03001).

Figure 24. GUI Builder overview

The GUI Builder needs only a few minutes to totally design the module appearances using 
"drag and drop" commands and then generate the source code file to be included into the 
application.

The file generated is composed of the following main parts:

• A resource table: it's a table of type GUI_WIDGET_CREATE_INFO, which specifies all 
the widgets to be included in the dialog and also their respective positions and sizes.

• A dialog callback routine: described more in detail in section 4.3 (it is referred to as 
“main module callback routine”).



DocID026161 Rev 1 33/74

UM1743 How to create a new module

73

4.2 Graphics customization

After the basic module graphical appearance is created, it is then possible to customize 
some graphical elements, such as the buttons, by replacing the standard aspect by the user 
defined image. To do this, a new element drawing callback should be created and used 
instead of the original one.

Below an example of a custom callback for the Play button:

On the code portion above, the _OnPaint_play routine contains just the new button drawing 
command.

Note that the new callback should be associated to the graphical element at the moment of 
its creation, as shown below:

Figure 25. Graphics customization

4.3 Module implementation

Once the graphical part of the module is finalized, the module functionalities and processes 
could be added then. It begins with the creation of the main module structure as defined in 
Section 3.6: Modules manager.



How to create a new module UM1743

34/74 DocID026161 Rev 1

Then, each module has its own Startup function which simply consists of the graphical 
module creation, initialization and link to the main callback:

In the example above cbDialog refers to the main module callback routine. Its general 
skeleton is structured like the following:

The list of windows messages presented in the code portion above (WM_INIT_DIALOG and 
WM_NOTIFY_PARENT) is not exhaustive, but represents the essential message IDs used:

• "WM_INIT_DIALOG: allows initializing the graphical elements with their respective 
initial values. It is also possible here to restore the backup parameters (if any) that will 
be used during the dialog procedure.

• "WM_NOTIFY_PARENT: describes the dialog procedure, for example: define the 
behavior of each button.

The full list of window messages can be found in the WM.h file.

4.4 Adding a module to the main desktop

Once the module appearance and functionality are defined and created, it still only to add 
the module to the main desktop view, this is done by adding it to the list (structure) of menu 
items: module_prop[ ], defined into k_module.h.

To do this, k_ModuleAdd() function should be called just after the module initialization into 
the main.c file.

Note that the maximum modules number in the demonstration package is limited to 15; this 
value can be changed by updating MAX_MODULES_NUM defined into k_module.c.



DocID026161 Rev 1 35/74

UM1743 How to create a new module

73

4.5 Module's direct open

If there is a need to launch the module directly from the file browser contextual menu, an 
additional method should be added in the module structure for the direct open feature. This 
callback is often named _ModuleName_DirectOpen.

Figure 26 is an example of how to open a file using the adequate module from the file 
browser.

Figure 26. Direct open from file browser

In the STM32CubeF4 demonstration, there are three modules linked to the file browser 
contextual menu:

• The video player(1), supporting the format:

– emf 

• The image browser, supporting the formats:

– jpg

– bmp

• The audio player, supporting the format:

– wav.

Then, to link the module to the file browser open menu, the command k_ModuleOpenLink() 
is called after the module is added.

1. The video player is not supported by STM32446E-EVAL demonstration.



Demonstration customization and configuration UM1743

36/74 DocID026161 Rev 1

5 Demonstration customization and configuration

5.1 LCD configuration

The LCD is configured through the LCDConf.c file, see Figure 27. The main configuration 
items are listed below:

• Multiple layers:

– The number of layers to be used defined using GUI_NUM_LAYERS.

• Multiple buffering:

– If NUM_BUFFERS is set to a value "n" greater than 1, it means that "n" frame 
buffers will be used for drawing operation (see section 7.1 for impact of multiple 
buffering on performance).

• Virtual screens:

– If the display area is greater than the physical size of the LCD, NUM_VSCREENS 
should be set to a value greater than 1. Note that virtual screens and multi buffers 
are not allowed together.

• Frame buffers locations:

The physical location of frame buffer is defined through LCD_LAYERX_FRAME_BUFFER.

Figure 27. LCDConf location

5.2 Layers management

In the STM32CubeF4 demonstration package with the STM324x9I-EVAL and Discovery Kit, 
GUI_NUM_LAYERS is set to 2 (both layers are used):

• "Layer 0 is dedicated to background display

• "Layer 1 is used for the main desktop display

Dedicated layers usage will lighten the CPU load during the refresh tasks.



DocID026161 Rev 1 37/74

UM1743 Demonstration customization and configuration

73

5.3 Touchscreen calibration

When the demonstration is launched for the first time, the touchscreen needs to be 
calibrated. A full set of dedicated routines is included in the demonstration package and 
regrouped into k_calibration.c file (Figure 28).

Figure 28. k_calibration.c location

To do this, after the startup screen is displayed, the user has to follow the displayed 
calibration instructions by touching the screen at the indicated positions (Figure 29). This 
will allow getting the physical Touch screen values that will be used to calibrate the screen.



Demonstration customization and configuration UM1743

38/74 DocID026161 Rev 1

Figure 29. Calibration steps

Once this runtime calibration is done, the touch screen calibration parameters are saved to 
the RTC Backup data registers: RTC_BKP_DR0 and RTC_BKP_DR1, so the next time the 
application is restarted, these parameters are automatically restored and there is no need to 
re-calibrate the touchscreen.

5.4 BSP customization

5.4.1 SDRAM configuration

The SDRAM capacity is 1 Mbyte x 32 bits x 4 banks. The BSP SDRAM driver offers a set of 
functions to initialize, read/write in polling or DMA mode.



DocID026161 Rev 1 39/74

UM1743 Demonstration customization and configuration

73

Figure 30. SDRAM initialization

The SDRAM external memory must be initialized before the GUI initialization to allow his 
use as LCD layers frame buffer.

The SDRAM is used also as DCMI output for camera module. The camera output is stored 
in camera frame buffer address as 16bpp (RGB565) and converted to 24bpp in the Camera 
converted frame before its stocking in the selected storage unit.

5.4.2 Touch screen configuration

The touch screen is controlled by the BSP TS driver which uses the BSP IO driver in case of 
STM32429-EVAL board and STM32446E-EVAL board, and by the TS3510 component in 
case of STM32439-EVAL board.

Table 8. LCD frame buffer locations 

Layer Address

LCD Layer0 0xC0200000

LCD Layer1 0xC0400000

Table 9. Camera frame buffer locations 

Camera Address

Camera frame buffer 0xC0000000

Camera converted frame 0xC0025800



Demonstration customization and configuration UM1743

40/74 DocID026161 Rev 1

Figure 31. Touch screen initialization

The touch screen is initialized in 'k_BspInit' following the used screen resolution as shown in 
the code below.



DocID026161 Rev 1 41/74

UM1743 Performance

73

6 Performance

Note: This section is only available for STM329I-EVAL demonstration.

6.1 Multi buffering features

Multiple buffering is the use of more than one frame buffer, so that the display ever shows a 
screen which is already completely rendered, even if a drawing operation is in process. 
When starting the process of drawing the current content of the front buffer is copied into a 
back buffer. After that all drawing operations take effect only on this back buffer. After the 
drawing operation has been completed the back buffer becomes the front buffer. Making the 
back buffer the visible front buffer normally only requires the modification of the frame buffer 
start address register of the display controller.

Now it should be considered that a display is refreshed by the display controller 
approximately 60 times per second. After each period there is a vertical synchronization 
signal, known as VSYNC signal. The best moment to make the back buffer the new front 
buffer is this signal. If not considering the VSYNC signal tearing effects can occur, as shown 
in Figure 32.

Figure 32. Example of tearing effect

6.2 Multi layers feature

Windows can be placed in any layer or display, drawing operations can be used on any 
layer or display. Since there are really only smaller differences from this point of view, 
multiple layers and multiple displays are handled the same way (Using the same API 
routines) and are simply referred to as multiple layers, even if the particular embedded 
system uses multiple displays. 

In the STM32CubeF4 demonstration, the layer 0 is dedicated for the background while the 
layer 1 with transparency activated is dedicated for the main desktop, this will allow to the 
kernel to keep the background unchanged during the desktop visual changes without 
refreshing the background image.



Performance UM1743

42/74 DocID026161 Rev 1

Figure 33. Independent layer management

6.3 Hardware acceleration

With the STM324x9I-EVAL and Discovery Kit demonstration, the hardware acceleration 
capabilities of the STM32F429/ STM32F439 cores are used. STemWin offers a set of 
customization callbacks to changes the default behavior based on the hardware 
capabilities, the optimized processes are implemented in the LCDConf.c file and implement 
the following features:

a) Color conversion

Internally STemWin works with logical colors (ABGR). To be able to translate 
these values into index values for the hardware and vice versa the color 
conversion routines automatically use the DMA2D for that operation if the layer 
work with direct color mode 

This low level implementation makes sure that in each case where multiple colors 
or index values need to be converted the DMA2D is used.

b) Drawing of index based bitmaps

when drawing index based bitmaps STemWin first loads the palette of the bitmap 
into the DMA2Ds LUT instead of directly translating the palette into index values 
for the hardware. The drawing operation then is done by only one function call of 
the DMA2D.

c) Drawing of high color bitmaps

If the layer works in the same mode as the high color bitmap has its pixel data 
available, these bitmaps can be drawn by one function call of the DMA2D. The 
following function is used to set up such a function;:

LCD_SetDevFunc(LayerIndex, LCD_DEVFUNC_DRAWBMP_16BPP, pFunc);

d) Filling operations

Setting up the function for filling operations:

LCD_SetDevFunc(LayerIndex, LCD_DEVFUNC_FILLRECT, pFunc);

e) Copy operations

Setting up the functions for copy operations used by the function GUI_CopyRect():

LCD_SetDevFunc(LayerIndex, LCD_DEVFUNC_COPYRECT, pFunc);



DocID026161 Rev 1 43/74

UM1743 Performance

73

f) Copy buffers

Setting up the function for transferring the front- to the back buffer when using 
multiple buffers:

LCD_SetDevFunc(LayerIndex, LCD_DEVFUNC_COPYBUFFER, pFunc);

g) Fading operations

Setting up the function for mixing up a background and a foreground buffer used 
for fading memory devices:

GUI_SetFuncMixColorsBulk(pFunc);

h) General alpha blending

The following function replaces the function which is used internally for alpha 
blending operations during image drawing (PNG or true color bitmaps) or 
semitransparent memory devices:

GUI_SetFuncAlphaBlending(pFunc);

i) Drawing antialiased fonts

Setting up the function for mixing single foreground and background colors used 
when drawing transparent ant aliased text:

GUI_SetFuncMixColors(pFunc).



Footprint UM1743

44/74 DocID026161 Rev 1

7 Footprint

The purpose of the following sections is to provide the memory requirements for all the 
demonstration modules, including jpeg decoder and STemWin's main GUI components. The 
aim is to have an estimation of memory requirement in case of suppression or addition of a 
module or feature. 

The footprint data are provided for the following environment:

• Tool chain:   IAR 6.70.1 

• Optimization: high size

• Board:        STM32F429-EVAL.

7.1 Kernel footprint

Table 10 shows the code memory, data memory and the constant memory used for each 
kernel file.

7.2 Module footprint

Table 11 shows the code memory, data memory and the constant memory used for each 
kernel file.

Table 10. Kernel files footprint

File code [byte] data [byte] const [byte]

k_bsp 260 8 0

K_calibration 972 28 48

k_Log 100 8(1)

1. The memory is allocated dynamically in some structures of this file.

0

k_mem 266 0 0

k_menu 3496 900 412089

k_module 214 244 0

k_module_res 98 0 207692

k_rtc 196 32 195529

k_startup 316 4 300064

k_storage 954 2844 24

main 614 4 44

Table 11. Modules footprint 

File code [byte] data [byte] const [byte]

Audio 6764 501(1) 33067

Benchmark 1320 36 32693



DocID026161 Rev 1 45/74

UM1743 Footprint

73

7.3 STemWin Features resources 

7.3.1 JPEG decoder

The JPEG decompression uses approximately 33 Kbytes of RAM for decompression 
independently of the image size and a size dependent amount of bytes. The RAM 
requirement can be calculated as follows:

Approximate RAM requirement = X-Size of image * 80 bytes + 33 Kbytes

The memory required for the decompression is allocated dynamically by the STemWin 
memory management system. After drawing the JPEG image the complete RAM will be 
released.

7.3.2 GUI Components

The operation area of STemWin varies widely, depending primarily on the application and 
features used. In the following sections, memory requirements of various modules are 
listed, as well as the memory requirements of example applications.

Table 13 shows the memory requirements of the main components of STemWin. These 
values depend a lot on the compiler options, the compiler version and the used CPU. Note 
that the listed values are the requirements of the basic functions of each module.

Camera 2467 213(1) 62629

File Browser 3062 516 69083

Game 4188 1916 33432

Image Browser 5308 1956(1) 32862

System 2486 89 33506

USB Device 540 29 195529

Video Player 6476 989(1) 32646

1. The memory is allocated dynamically in some structures of this file.

Table 11. Modules footprint (continued)

File code [byte] data [byte] const [byte]

Table 12. RAM requirements for some JPEG resolutions

Resolutiont RAM usage [kbyte] RAM usage, size dependent [kbyte]

160x120 45.5 12.5

320x340 58.0 25.0

480x272 70.5 37.5

640x480 83.0 50.0



Footprint UM1743

46/74 DocID026161 Rev 1

Table 13. MemoSTemWin components memory requirements 

Component ROM RAM Description

Windows Manager 6.2 Kbytes 2.5 Kbytes Additional memory requirements of basic 
application when using the Windows Manager

Memory Devices 4.7 Kbytes 7 Kbytes Additional memory requirements of basic 
application when using memory devices

Antialiasing 4.5 Kbytes 2 * LCD_XSIZE
Additional memory requirements for the 
antialiasing software item

Driver 2-8 Kbytes 20 bytes

The memory requirements of the driver 
depend on the configured driver and whether 
a data cache is used or not.

With a data cache, the driver requires more 
RAM

Multilayer 2-8 Kbytes -

If working with a multi layer or a multi display 
configuration, additional memory is required 
for each additional layer, because each 
requires its own driver

Core 5.2 Kbytes 80 bytes
Memory requirements of a typical application 
without using additional software items

JPEG 12 Kbytes 36 Kbytes Basic routines for drawing JPEG files

GIF 3.3 Kbytes 17 Kbytes Basic routines for drawing GIF files

Sprites 4.7 Kbytes 16 bytes Routines for drawing sprites and cursors

Font 1-4 Kbytes - Depends on the font size to be used

Table 14. Widget memory requirements 

Component ROM RAM Description

BUTTON 1.0 Kbytes  40 bytes (1)

CHECKBOX 1.0 Kbytes 52 bytes (1)

DROPDOWN 1.8 Kbytes 52 bytes (1)

EDIT 2.2 Kbytes 28 bytes (1)

FRAMEWIN 2.2 Kbytes 12 bytes (1)

GRAPH 2.9 Kbytes 48 bytes (1)

GRAPH_DATA_XY 0.7 Kbytes - (1)

GRAPH_DATA_XY 0.6 Kbytes - (1)

HEADER 2.8 Kbytes 32 bytes (1)

LISTBOX 3.7 Kbytes 56 bytes (1)

LISTVIEW 3.6 Kbytes 44 bytes (1)

MENU 5.7 Kbytes 52 bytes (1)

MULTIEDIT 7.1 Kbytes 16 bytes (1)



DocID026161 Rev 1 47/74

UM1743 Footprint

73

MULTIPAGE 3.9 Kbytes 32 bytes (1)

PROGBAR 1.3 Kbytes 20 bytes (1)

RADIOBUTTON 1.4 Kbytes 32 bytes (1)

SCROLLBAR 2.0 Kbytes 14 bytes (1)

SLIDER 1.3 Kbytes 16 bytes (1)

TEXT 1.0 Kbytes 16 bytes (1)

CALENDAR 0.6 Kbytes 32 bytes (1)

1. The listed memory requirements of the widgets contain the basic routines required for creating and drawing 
the widget. Depending on the specific widget there are several additional functions available which are not 
listed in the table

Table 14. Widget memory requirements (continued)

Component ROM RAM Description



Demonstration functional description UM1743

48/74 DocID026161 Rev 1

8 Demonstration functional description

8.1 Kernel

The main desktop is built around two main graphical components:

• The status bar: indicates the storage units' connection status, current time and date 
and a system utilities button to allow getting system information like (running task, CPU 
usage, and kernel log).

• The icon view widget: contains the icons associated to added modules. User can 
launch a module by a simple click on the module icon (see Figure 34).

Figure 34. CPU usage display

The system utilities are accessible during the STM32CubeF4 demonstration running time, 
using the system button (ST Logo) in top left of the main desktop. The system utilities button 
offers the following services: 

• CPU Usage history

• Kernel log messages

• Current running processes viewer.



DocID026161 Rev 1 49/74

UM1743 Demonstration functional description

73

8.1.1 CPU Usage

The CPU Usage utility provides a graphical representation of the CPU usage evolution 
(Figure 35) during the demonstration run time starting for the first time it was launched. Note 
that once launched the CPU usage utilities keep running in background and can be restored 
in any time.

Figure 35. CPU usage

8.1.2 Kernel Log

The kernel log utility gather all the kernel and module messages and save them into a 
dedicated internal buffer. The Log messages can be visualized at any time during the 
demonstration run time, as shown in Figure 36.

Figure 36. Example of Log messages



Demonstration functional description UM1743

50/74 DocID026161 Rev 1

8.1.3 Process Viewer

The process viewer (Figure 37) allows to check and to display the status of the currently 
running tasks (FreeRTOS) at any time during the demonstration run time. It shows the 
following information:

1. Current running tasks names.

2. Current running tasks priorities

3. Running tasks states (FreeRTOS statics information).

Figure 37. Process viewer

8.2 Modules

8.2.1 System

Overview

The system module provides three control tabs: system information, general settings and 
clock settings to set the global demonstration settings. The system module retrieves 
demonstration information from internal kernel settings data structures and acts on the 
several kernel services to changes settings.

Functional description

The system module provides three graphical views:

a) Demonstration global Information (Figure 38)

This first page shows the main demonstration information such as: Used board, 
STM32 core part number, and current CPU clock and demonstration revision.

b) General settings (Figure 39)

The general settings tab permits to change the global demonstration configuration. 
Note that the new settings are not applied immediately; new settings take effect 
after restarting the demonstration.



DocID026161 Rev 1 51/74

UM1743 Demonstration functional description

73

Figure 38. Demonstration global information

Figure 39. Demonstration general settings



Demonstration functional description UM1743

52/74 DocID026161 Rev 1

Table 15 shows the different settings that can be changed.

c) Clock settings

The clock setting tab (Figure 40) allows to adjust the demonstration time and date 
by changing the RTC configuration of the kernel.

Figure 40. Clock setting

Table 15. Available settings

Configuration item Description

Enable sprites

Checking this box allows the sprites to move on the background desktop

Enable background mode Not used (reserved for future use)

Run CPU at 180 MHz

Allow to run the demonstration at maximum speed. Note that the device 
USB clock is not at compliant clock with mode. To use the USB device 
mass storage module, it is recommended to use the default 168 MHz 
CPU clock

Disable Flex skin

Unchecking this box, classical GUI skin is used.



DocID026161 Rev 1 53/74

UM1743 Demonstration functional description

73

8.2.2 File Browser

Overview

The File browser module is a system module that allows to explore the connected 
storage unit(s), to delete or to open a selected file. The file list structure is built 
during the media connection and updated after a connection status change of one 
of the used media.

Figure 41. File browser

Functional description

The file browser is mainly used for standard file operations: explore folder, file 
information, file deletion and opening supported extension file when a file type is 
linked to the direct open file feature of the kernel (Figure 42). Note that Read-Only 
file cannot be deleted physically from media.



Demonstration functional description UM1743

54/74 DocID026161 Rev 1

Figure 42. File browser module architecture

To open the contextual file menu, user has to select a file (selecting a folder has no effect).

The following actions are accessible through the contextual menu:

a) Open file: if a file extension is linked to the direct open file feature of the kernel, the 
associated application with this extension is launched and the file is opened 
automatically (Figure 43).

Figure 43. File opening from browser

b) Delete file: selecting a file for deletion will display a confirmation message box to 
confirm the deletion operation. Note that Read-Only file cannot be deleted 
physically from media.

c) Proprieties: the File browser can be used to check file proprieties such as current 
location, size, and creation date.



DocID026161 Rev 1 55/74

UM1743 Demonstration functional description

73

Figure 44. File properties display

Note: The File browser can explore up to four levels, the maximum explorer level is defined in the 
kernel files (k_storage.h).

8.2.3 Game

The game coming in the STM32CubeF4 demonstration is based on the Reversi game. It is 
a strategy board game for two players, played on an 8×8 board. The goal of the game is to 
have the majority of disks turned to display your color when the last playable empty square 
is filled. 

In this STM32CubeF4 demonstration STM32 MCU is one of the two players. The GUI will 
ask the user to start a new game when the ongoing one is over.

Figure 45. Reversi game



Demonstration functional description UM1743

56/74 DocID026161 Rev 1

8.2.4 Benchmark

Overview

The Benchmark module is a system module that allows measure the graphical performance 
by measuring the time needed to draw several colored rectangles in random position with 
random size during a specific period. The result is given in pixel per second.

Functional description

The benchmark starts immediately once the start speed benchmark button is pressed. After 
few seconds the result is displayed in red below the CPU Usage graphical window and 
result is logged in the right list box with date and time stamp (Figure 46).

Figure 46. Benchmarking

8.2.5 Audio

Overview

The audio player module provides a complete audio solution based on the STM32F4xx and 
delivers a high-quality music experience. It supports playing music in WAV format but may 
be extended to support other compressed formats such as MP3 and WMA audio formats.

Architecture

Figure 47 shows the different audio player parts and their connections and interactions with 
the external components.



DocID026161 Rev 1 57/74

UM1743 Demonstration functional description

73

Figure 47. Audio player module architecture

Data structure used

Table 16 contains the different data structure used in audio player module and a brief 
description of each of them.

Table 16. Data structure for audio 

Structure Description

WAV_InfoTypedef Contains the wave file information extracted from wave file header

AUDIOPLAYER_ProcessTypdef
Contains the audio player state, the speaker state, the volume 
value and the pointer to the audio buffer.

AUDIOPLAYER_StateTypdef

Contains the different audio player state:

– AUDIOPLAYER_STOP 

– AUDIOPLAYER_START

– AUDIOPLAYER_PLAY

– AUDIOPLAYER_PAUSE

– AUDIOPLAYER_EOF

– AUDIOPLAYER_ERROR



Demonstration functional description UM1743

58/74 DocID026161 Rev 1

Functional description

The audio player initialization is done in startup step. In this step all the audio player states, 
the speaker and the volume value are initialized and only when the play button in the audio 
player interface is pressed to start the process. 

There are two ways to start audio player module:

• From main desktop menu as shown in Figure 48

• Through the file browser contextual menu: direct open feature.

Figure 48. Audio player module startup

When the audio player is started, the following actions are executed:

• The graphical components are initialized:

– The audio frame

– The control buttons

– The list box field

An additional memory is allocated to keep the audio list (pWavList) and the audio file 
information (pFileInfo).

AUDIOPLAYER_ErrorTypdef

Contains the different possible error.

– AUDIOPLAYER_ERROR_NONE 

– AUDIOPLAYER_ERROR_IO

– AUDIOPLAYER_ERROR_HW 

– AUDIOPLAYER_ERROR_MEM 

– AUDIOPLAYER_ERROR_FORMAT_NOTSUPPORTED

BUFFER_StateTypeDef

Contains the different Buffer state

– BUFFER_OFFSET_NONE 

– BUFFER_OFFSET_HALF 

– BUFFER_OFFSET_FULL.

Table 16. Data structure for audio (continued)

Structure Description



DocID026161 Rev 1 59/74

UM1743 Demonstration functional description

73

Table 17. Audio module controls 

Button Preview Brief description

Play button

Changes the audio player state to “AUDIOPLAYER_PLAY”

Reads the wave file from storage unit 

Sets the frequency

Starts or resumes the audio task 

Starts playing audio stream from a data buffer using 
“BSP_AUDIO_OUT_Play” function in BSP audio driver.

Replaces play button by pause button

Pause button

Suspends the audio task

Pauses the audio file stream

Replaces pause button by play button 

Stop button

Close the wave file from storage unit

Suspends the audio task

Stops audio playing

Changes the audio player state to “AUDIOPLAYER_STOP”

Previous button

Point to the previous wave file

Stops audio playing

Starts playing the previous wave file if play button is pressed

Next button

Point to the next wave file

Stops audio playing

Starts playing the next wave file if play button is pressed

Add file to 
playlist

Open file browser window and choose wave file to be added to 
playlist

Add folders
Open file browser window and choose entire folder to be added 
to playlist

Repeat buttons

At the end of file:

- If repeat all is selected next wave file is selected and played

- If repeat once is selected the played wave file is repeated

- If repeat off is selected the audio player stop

Speaker button
Sets the volume at mute (first press)

Sets the volume at value displayed in volume slider (second 
press

Volume slider Sets the volume value

Progress slider Sets the desired position in the wave file

Close button Close audio player module



Demonstration functional description UM1743

60/74 DocID026161 Rev 1

8.2.6 Video

Overview

The video player module provides a video solution based on the STM32F4xx and STemWin 
movie API. It supports playing movie in emf format.

Architecture

Figure 49 shows the different video player modules and their connections and interactions 
with the external components.

Figure 49. Video player module architecture

Functional description

There are two ways to start Video player module:

• Either by touching the video player icon: Figure 50

• Or by using the file browser contextual menu: direct open feature.



DocID026161 Rev 1 61/74

UM1743 Demonstration functional description

73

When the video player is started, the following actions are executed:

• The graphical components are initialized:

– The video frame

– The control buttons

– The list box field

• Memory is allocated to save the video list (pVideoList) and the file information 
(pFileInfo).

Figure 50. Video player module startup

Table 18 summarizes the different actions behind each control button:

Table 18. Video module controls 

Button Preview Brief description

Play button

Checks if the video size is not supported

Supported video size: 0 < xSize < 1024 and 0 < ySize < 768

Changes the video player state to “VIDEO_PLAY”

Reads the video file from storage unit 

Replaces play button by pause button

Pause button

Pauses the video file stream

Changes the video player state to “VIDEO_PAUSE”

Replaces pause button by play button

Stop button

Closes the video file from storage unit

Stops video playing

Changes the video player state to “VIDEO_IDLE”

Previous button

Points to the previous video file

Stops video playing

Changes the video player state to “VIDEO_IDLE”



Demonstration functional description UM1743

62/74 DocID026161 Rev 1

Video file creation (emf)

To be able to play movies with the STemWin API functions it is required to create files of the 
STemWin specific EmWin movie file format. There are two steps to generate an emf file:

a) Convert files of any MPEG file format into a folder of single JPEG files for each 
frame (Figure 51). The free FFmpeg available at ffmpeg website can be used.

Next button

Points to the next video file

Stops video playing

Starts playing the next video file if play button is pressed

Add file to playlist
Opens file browser window and choose emf file from 
available storage unit to be added to playlist

Add folder
Opens file browser window and choose entire folder from 
available storage unit to be added to playlist

Repeat buttons

At the end of file:

- If repeat all is selected next video file is selected and played

- If repeat once is selected the played video file is repeated

- If repeat off is selected the video player stops

Progress slider Sets the desired position in the emf file

Full screen button Scales the image to be showed on full screen mode

Close button Closes video player module

Table 18. Video module controls (continued)

Button Preview Brief description



DocID026161 Rev 1 63/74

UM1743 Demonstration functional description

73

Figure 51. EMF generation environment

b) Create an emf file from JPEG file using JPEG2Movie tool available in STemWin 
package (see Figure 52).

Figure 52. JPEG2Movie overview



Demonstration functional description UM1743

64/74 DocID026161 Rev 1

The above steps could be done once using a predefined batch (included in the STemWin 
package) as shown in Figure 53.

Figure 53. EMF file generation

For more information about how to use the emf generation batches, refer to the STemWin 
User and Reference Guide (UM3001).

Table 19. Batch files description

File Explanation

Prep.bat
Sets some defaults to be used.

Needs to be adapted as explained in Prep.bat.

MakeMovie.bat
Main conversion file.

Not to be adapted normally.

<X_SIZE>x<Y_SIZE>.bat
Some helper files for different resolutions.

Detailed explanation in <X_SIZE>x<Y_SIZE>.bat



DocID026161 Rev 1 65/74

UM1743 Demonstration functional description

73

Prep.bat

The Prep.bat is required to prepare the environment for the actual process. Calling it directly 
will not have any effect. It is called by the MakeMovie.bat. To be able to use the batch files it 
is required to adapt this file at first. This file sets variables used by the file MakeMovie.bat, 
they are listed in Table 20.

.

MakeMovie.bat

This is the main batch file used for the conversion process. Normally it is not required to be 
change this file, but it is required to adapt Prep.bat first. It could be called with the 
parameters listed in Table 21:

Table 20. Variables description

Variable Description

%OUTPUT%
Destination folder for the JPEG files.

Will be cleared automatically when starting the conversion with 
MakeMovie.bat.

%FFMPEG%
Access variable for the FFmpeg tool.

Should contain the complete path required to call FFmpeg.exe.

%JPEG2MOVIE%
Access variable for the JPEG2MOVIE tool.

Should contain the complete path required to call JPEG2Movie.exe.

%DEFAULT_SIZE%
Default movie resolution to be used.

Can be ignored if one of the <X-SIZE>x<Y-SIZE>.bat files are used.

%DEFAULT_QUALITY%

Default quality to be used by FFmpeg.exe for creating the JPEG files.

The lower the number the better the quality. Value 1 indicates that a 
very good quality should be achieved, value 31 indicates the worst 
quality.

For more details please refer to the FFmpeg documentation.

%DEFAULT_FRAMERATE%

Frame rate in frames/second to be used by FFmpeg.

It defines the number of JPEG files to be generated by FFmpeg.exe 
for each second of the movie.

For more details please refer to the FFmpeg documentation.

Table 21. Parameters description

Parameter Description

%1 Movie file to be converted

%2 (optional)
Size to be used.

If not given %DEFAULT_SIZE% of Prep.bat is used.

%3 (optional)
Quality to be used.

If not given %DEFAULT_QUALITY% of Prep.bat is used.

%4 (optional)
Frame rate to be used.

If not given %DEFAULT_FRAMERATE% of Prep.bat is used.



Demonstration functional description UM1743

66/74 DocID026161 Rev 1

Since the FFmpeg output can differ strongly from the output of previous actions, the 
MakeMovie.bat deletes all output files in the first place. The output folder is defined by in the 
environmental variable %OUTPUT% in Prep.bat. After that it uses FFmpeg.exe to create 
the required JPEG files for each frame. Afterwards it calls JPEG2Movie to create a single 
EMF file which can be used by STemWin directly. After the conversion operation the result 
can be found in the conversion folder under FFmpeg.emf. It also creates a copy of that file 
into the source file folder. It will have the same name as the source file with a size-postfix 
and .emf extension.

<X_SIZE>x<Y_SIZE>.bat

These files are small but useful helpers if several movie resolutions are required. The 
filenames of the batch files itself are used as parameter '-s' for FFmpeg.exe. You can simply 
drag-and-drop the file to be converted to one of these helper files. After that an .emf file with 
the corresponding size-postfix can be found in the source file folder.

8.2.7 USB Mass storage Device

Overview

The USB device module includes mass storage device application using the MicroSD 
memory. It uses the USB OTG FS peripheral as the USB OTG HS is used for the USB disk 
Flash storage unit.

Architecture

Figure 54 shows the different USBD module components and their connections and 
interactions with the external components.

Figure 54. USBD module architecture



DocID026161 Rev 1 67/74

UM1743 Demonstration functional description

73

Data structure used

Functional description

Run USB Device demonstration by clicking USB device icon in the main desktop, as in 
Figure 55.

Figure 55. USBD module startup

Table 22. Data structure for USBD module

Structure Description

USBDSettingsTypeDef sd_mounted: connection status

Table 23. USBD module controls 

Button Preview Brief description

Connect USB

Changes the USB logo as follows:

Changes the USBD status as CONNECTED

Disconnect USB

Changes the USB logo as follows:

Changes the USBD status as DISCONNECTED



Demonstration functional description UM1743

68/74 DocID026161 Rev 1

8.2.8 Camera

Overview

The camera application allows to directly and permanently display on the LCD the image 
captured using the camera module. It is also possible to take a snapshot and save it to a 
customizable location in the storage unit.

In addition to brightness and contrast which are adjustable, several effects can be applied to 
the output image: black and white, negative, antique...etc. Note that all these effects can be 
applied in runtime.

Architecture

Figure 56 shows the different camera module parts and their respective connections and 
interactions with the external components.

Insert

microSD card
NA

Changes the microSD logo as follows:

Remove

microSD card
NA

Changes the microSD logo as follows:

Close Closes USBD module

Table 23. USBD module controls (continued)

Button Preview Brief description



DocID026161 Rev 1 69/74

UM1743 Demonstration functional description

73

Figure 56. Camera module architecture

Functional description

To start the camera module click on the Camera icon, as indicated in Figure 57.

Figure 57. Camera module startup

When the camera module is started, the following actions are executed:

• The graphical components are initialized.

• Memory is allocated to save the capture folder location (pFileInfo).

• The saved parameters (brightness and contrast) are restored from the RTC backup 
register.

Table 24 summarizes the different actions behind each control button:



Demonstration functional description UM1743

70/74 DocID026161 Rev 1

8.2.9 Image viewer

Overview

The Image viewer module allows displaying bmp and jpg pictures. It is possible to load the 
full images list from a folder or to add the images manually to the playlist. Once the playlist is 
created, navigation between pictures can be done either via Next and previous buttons or by 
enabling the slide show mode. The slide show timer can be changed on the fly (there is no 
need to restart the module).

Architecture

Figure 58 shows the different image viewer parts and their respective connections and 
interactions with the external components.

Table 24. Camera module controls 

Button Preview Brief description

Settings Creates and shows the settings dialog

Capture

Checks the camera state

Displays a popup message ("Saving image...")

Saves the current image to the specified file (default path is the root)

Deletes the popup message

Close

Frees allocated memory during the initialization

Stops the camera module

Ends the module dialog

Effects Applies the selected effect on the fly via the BSP camera driver commands



DocID026161 Rev 1 71/74

UM1743 Demonstration functional description

73

Figure 58. Image viewer architecture

Functional description

There are two ways to start Image viewer module:

• Either by touching the Image viewer icon (Figure 59);

• Or by using the file browser contextual menu: direct open feature.

When the image viewer is started, the following actions are executed:

• The graphical components are initialized:

– The image frame

– The control buttons

– The list box field

• Memory is allocated to save the image list (pImageList) and the file information 
(pFileInfo).

• The saved parameters are restored from the RTC backup register.



Demonstration functional description UM1743

72/74 DocID026161 Rev 1

Figure 59. Image viewer startup

Table 25 summarizes the different actions behind each control button.

Table 25. Image viewer module controls 

Button Preview Brief description

Close
Frees allocated memory

Ends the module dialog

Previous

Closes the current image

Opens the previous image

Refreshes the image frame

Updates the selection in the playlist

Start slideshow

Closes the current image

Opens the next image

Refreshes the image frame

Creates the slideshow timer

Next

Closes the current image

Opens the next image

Refreshes the image frame

Updates the selection in the playlist

Settings Creates and shows the settings dialog

Add folder
Opens the directory chooser to allow selection of an entire 
folder and then adds all the images included in this folder to the 
playlist

Add file
Opens the file chooser to allow selection of an image which will 
be added to the playlist.



DocID026161 Rev 1 73/74

UM1743 Revision history

73

9 Revision history

          

Table 26. Document revision history 

Date Revision Changes

24-Apr-2014 1 Initial release.

20-Mar-2015 2

Introduced STM32446E-EVAL demonstration.

Added:

– Figure 5: Startup window for STM32446E-EVAL demonstration;

– Figure 7: Main desktop window for STM32446E-EVAL 
demonstration;

– Figure 9: Status bar for STM32446E-EVAL demonstration;

– Figure 11: Icon view widget for STM32446E-EVAL demonstration;

– Figure 14: Starting file execution for STM32446E-EVAL 
demonstration;

– Figure 18: Detection of storage units for STM32446E-EVAL 
demonstration;

– Figure 21: Memory heap for STM32CubeF4 demonstration;

– footnote 1 in Section 4.5: Module's direct open;

– note in Section 6: Performance.

Updated:

– Introduction and figure on Cover page;

– Section 3.1: Overview;

– Section 3.2: Kernel initialization;

– Section 3.3: Kernel processes and tasks;

– Section 3.7: Direct open feature;

– Figure 5: Startup window for STM32446E-EVAL demonstration;

– Figure 23: STM32Cube demonstration boards;

– Section 3.11: Memory Management;

– Section 3.15: Hardware settings;

– Table 7: Jumpers for different demonstration boards;

– Section 5.4.2: Touch screen configuration;

– Figure 53: EMF file generation.



UM1743

74/74 DocID026161 Rev 2

          

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and 
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on 
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order 
acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or 
the design of Purchasers’ products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics – All rights reserved


	1 STM32Cube™ overview
	2 Global architecture
	3 Kernel description
	3.1 Overview
	3.2 Kernel initialization
	3.3 Kernel processes and tasks
	3.4 Kernel graphical aspect
	3.5 Kernel menu management
	3.6 Modules manager
	3.7 Direct open feature
	3.8 Backup and settings configuration
	3.9 Storage units
	3.10 Clock and Date
	3.11 Memory Management
	3.12 Demonstration repository
	3.13 Kernel components
	3.14 Kernel core files
	3.15 Hardware settings

	4 How to create a new module
	4.1 Creating the graphical aspect
	4.2 Graphics customization
	4.3 Module implementation
	4.4 Adding a module to the main desktop
	4.5 Module's direct open

	5 Demonstration customization and configuration
	5.1 LCD configuration
	5.2 Layers management
	5.3 Touchscreen calibration
	5.4 BSP customization
	5.4.1 SDRAM configuration
	5.4.2 Touch screen configuration


	6 Performance
	6.1 Multi buffering features
	6.2 Multi layers feature
	6.3 Hardware acceleration

	7 Footprint
	7.1 Kernel footprint
	7.2 Module footprint
	7.3 STemWin Features resources
	7.3.1 JPEG decoder
	7.3.2 GUI Components


	8 Demonstration functional description
	8.1 Kernel
	8.1.1 CPU Usage
	8.1.2 Kernel Log
	8.1.3 Process Viewer

	8.2 Modules
	8.2.1 System
	8.2.2 File Browser
	8.2.3 Game
	8.2.4 Benchmark
	8.2.5 Audio
	8.2.6 Video
	8.2.7 USB Mass storage Device
	8.2.8 Camera
	8.2.9 Image viewer


	9 Revision history

